912 resultados para Medical lab data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although osteoporosis is a systemic disease, vertebral fractures due to spinal bone loss are a frequent, sometimes early and often neglected complication of the disease, generally associated with considerable disability and pain. As osteoporotic vertebral fractures are an important predictor of future fracture risk, including at the hip, medical management is targeted at reducing fracture risk. A literature search for randomized, double-blind, prospective, controlled clinical studies addressing medical treatment possibilities of vertebral fractures in postmenopausal Caucasian women was performed on the leading medical databases. For each publication, the number of patients with at least one new vertebral fracture and the number of randomized patients by treatment arm was retrieved. The relative risk (RR) and the number needed to treat (NNT, i.e. the number of patients to be treated to avoid one radiological vertebral fracture over the duration of the study), together with the respective 95% confidence intervals (95%CI) were calculated for each study. Treatment of steroid-induced osteoporosis and treatment of osteoporosis in men were reviewed separately, based on the low number of publications available. Forty-five publications matched with the search criteria, allowing for analysis of 15 different substances tested regarding their anti-fracture efficacy at the vertebral level. Bisphosphonates, mainly alendronate and risedronate, were reported to have consistently reduced the risk of a vertebral fracture over up to 50 months of treatment in four (alendronate) and two (risedronate) publications. Raloxifene reduced vertebral fracture risk in one study over 36 months, which was confirmed by 48 months' follow-up data. Parathormone (PTH) showed a drastic reduction in vertebral fracture risk in early studies, while calcitonin may also be a treatment option to reduce fracture risk. For other substances published data are conflicting (calcitriol, fluoride) or insufficient to conclude about efficacy (calcium, clodronate, etidronate, hormone replacement therapy, pamidronate, strontium, tiludronate, vitamin D). The low NNTs for the leading substances (ranges: 15-64 for alendronate, 8-26 for risedronate, 23 for calcitonin and 28-31 for raloxifene) confirm that effective and efficient drug interventions for treatment and prevention of osteoporotic vertebral fractures are available. Bisphosphonates have demonstrated similar efficacy in treatment and prevention of steroid-induced and male osteoporosis as in postmenopausal osteoporosis. The selection of the appropriate drug for treatment of vertebral osteoporosis from among a bisphosphonate (alendronate or risedronate), PTH, calcitonin or raloxifene will mainly depend on the efficacy, tolerability and safety profile, together with the patient's willingness to comply with a long-term treatment. Although reduction of vertebral fracture risk is an important criterion for decision making, drugs with proven additional fracture risk reduction at all clinically relevant sites (especially at the hip) should be the preferred options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IMPORTANCE Because effective interventions to reduce hospital readmissions are often expensive to implement, a score to predict potentially avoidable readmissions may help target the patients most likely to benefit. OBJECTIVE To derive and internally validate a prediction model for potentially avoidable 30-day hospital readmissions in medical patients using administrative and clinical data readily available prior to discharge. DESIGN Retrospective cohort study. SETTING Academic medical center in Boston, Massachusetts. PARTICIPANTS All patient discharges from any medical services between July 1, 2009, and June 30, 2010. MAIN OUTCOME MEASURES Potentially avoidable 30-day readmissions to 3 hospitals of the Partners HealthCare network were identified using a validated computerized algorithm based on administrative data (SQLape). A simple score was developed using multivariable logistic regression, with two-thirds of the sample randomly selected as the derivation cohort and one-third as the validation cohort. RESULTS Among 10 731 eligible discharges, 2398 discharges (22.3%) were followed by a 30-day readmission, of which 879 (8.5% of all discharges) were identified as potentially avoidable. The prediction score identified 7 independent factors, referred to as the HOSPITAL score: h emoglobin at discharge, discharge from an o ncology service, s odium level at discharge, p rocedure during the index admission, i ndex t ype of admission, number of a dmissions during the last 12 months, and l ength of stay. In the validation set, 26.7% of the patients were classified as high risk, with an estimated potentially avoidable readmission risk of 18.0% (observed, 18.2%). The HOSPITAL score had fair discriminatory power (C statistic, 0.71) and had good calibration. CONCLUSIONS AND RELEVANCE This simple prediction model identifies before discharge the risk of potentially avoidable 30-day readmission in medical patients. This score has potential to easily identify patients who may need more intensive transitional care interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The Virtual Molecular Biology Lab is an innovative, computer-based educational program designed to teach advanced high school biology students how to create a transgenic mouse model in a simulated laboratory setting. It was created in an effort to combat the current decrease in adolescent enthusiasm for and academic achievement in science and science careers, especially in Hispanic students. Because studies have found that hands-on learning, particularly computer-based instruction, is effective in enhancing science achievement, the Virtual Lab is a potential tool for increasing the number of Hispanic students that choose to enter science fields. [See PDF for complete abstract]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rigorous between-subjects methodology employing independent random samples and having broad clinical applicability was designed and implemented to evaluate the effectiveness of back safety and patient transfer training interventions for both hospital nurses and nursing assistants. Effects upon self-efficacy, cognitive, and affective measures are assessed for each of three back safety procedures. The design solves the problem of obtaining randomly assigned independent controls where all experimental subjects must participate in the training interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A management information system (MIS) provides a means for collecting, reporting, and analyzing data from all segments of an organization. Such systems are common in business but rare in libraries. The Houston Academy of Medicine-Texas Medical Center Library developed an MIS that operates on a system of networked IBM PCs and Paradox, a commercial database software package. The data collected in the system include monthly reports, client profile information, and data collected at the time of service requests. The MIS assists with enforcement of library policies, ensures that correct information is recorded, and provides reports for library managers. It also can be used to help answer a variety of ad hoc questions. Future plans call for the development of an MIS that could be adapted to other libraries' needs, and a decision-support interface that would facilitate access to the data contained in the MIS databases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current state of health and biomedicine includes an enormity of heterogeneous data ‘silos’, collected for different purposes and represented differently, that are presently impossible to share or analyze in toto. The greatest challenge for large-scale and meaningful analyses of health-related data is to achieve a uniform data representation for data extracted from heterogeneous source representations. Based upon an analysis and categorization of heterogeneities, a process for achieving comparable data content by using a uniform terminological representation is developed. This process addresses the types of representational heterogeneities that commonly arise in healthcare data integration problems. Specifically, this process uses a reference terminology, and associated "maps" to transform heterogeneous data to a standard representation for comparability and secondary use. The capture of quality and precision of the “maps” between local terms and reference terminology concepts enhances the meaning of the aggregated data, empowering end users with better-informed queries for subsequent analyses. A data integration case study in the domain of pediatric asthma illustrates the development and use of a reference terminology for creating comparable data from heterogeneous source representations. The contribution of this research is a generalized process for the integration of data from heterogeneous source representations, and this process can be applied and extended to other problems where heterogeneous data needs to be merged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether algorithms developed for the World Wide Web can be applied to the biomedical literature in order to identify articles that are important as well as relevant. DESIGN AND MEASUREMENTS A direct comparison of eight algorithms: simple PubMed queries, clinical queries (sensitive and specific versions), vector cosine comparison, citation count, journal impact factor, PageRank, and machine learning based on polynomial support vector machines. The objective was to prioritize important articles, defined as being included in a pre-existing bibliography of important literature in surgical oncology. RESULTS Citation-based algorithms were more effective than noncitation-based algorithms at identifying important articles. The most effective strategies were simple citation count and PageRank, which on average identified over six important articles in the first 100 results compared to 0.85 for the best noncitation-based algorithm (p < 0.001). The authors saw similar differences between citation-based and noncitation-based algorithms at 10, 20, 50, 200, 500, and 1,000 results (p < 0.001). Citation lag affects performance of PageRank more than simple citation count. However, in spite of citation lag, citation-based algorithms remain more effective than noncitation-based algorithms. CONCLUSION Algorithms that have proved successful on the World Wide Web can be applied to biomedical information retrieval. Citation-based algorithms can help identify important articles within large sets of relevant results. Further studies are needed to determine whether citation-based algorithms can effectively meet actual user information needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information overload is a significant problem for modern medicine. Searching MEDLINE for common topics often retrieves more relevant documents than users can review. Therefore, we must identify documents that are not only relevant, but also important. Our system ranks articles using citation counts and the PageRank algorithm, incorporating data from the Science Citation Index. However, citation data is usually incomplete. Therefore, we explore the relationship between the quantity of citation information available to the system and the quality of the result ranking. Specifically, we test the ability of citation count and PageRank to identify "important articles" as defined by experts from large result sets with decreasing citation information. We found that PageRank performs better than simple citation counts, but both algorithms are surprisingly robust to information loss. We conclude that even an incomplete citation database is likely to be effective for importance ranking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information overload is a significant problem for modern medicine. Searching MEDLINE for common topics often retrieves more relevant documents than users can review. Therefore, we must identify documents that are not only relevant, but also important. Our system ranks articles using citation counts and the PageRank algorithm, incorporating data from the Science Citation Index. However, citation data is usually incomplete. Therefore, we explore the relationship between the quantity of citation information available to the system and the quality of the result ranking. Specifically, we test the ability of citation count and PageRank to identify "important articles" as defined by experts from large result sets with decreasing citation information. We found that PageRank performs better than simple citation counts, but both algorithms are surprisingly robust to information loss. We conclude that even an incomplete citation database is likely to be effective for importance ranking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is becoming clear that if we are to impact the rate of medical errors it will have to be done at the practicing physician level. The purpose of this project was to survey the attitude of physicians in Alabama concerning their perception of medical error, and to obtain their thoughts and desires for medical education in the area of medical errors. The information will be used in the development of a physician education program.