886 resultados para Marginal areas
Resumo:
Comparison of flow duration curves for a weir draining an undrained raised peat with those generated 20 years previously reveal that more recent curves reflect to be flatter with a lower Q95/Q5 ratio. Comparison of the bog topography for the same period revealed that although marginal drainage/peat reclamation had resulted in desiccation of peat around the bog margin and more frequent intense runoff, the central part of the bog had subsided to form an enclosed basin ,resulting in the creation of newly formed lakes that gave the central part of the bog an improved capacity to store, and more slowly discharge, water. Interrogation of groundwater monitoring data revealed a net decline in groundwater levels of up to three metres in the glacial tills underlying the bog associated with deepening and expansion of a marginal drain network which penetrated the base of the peat. Comparing organic carbon levels in peat the central part of the bog over a ten year period revealed an overall increase, with changes being most marked in deeper fen peat layers. These findings suggest that the decline in groundwater levels in the peat substrate resulted in an increase in effective stress in the peat causing greater subsidence in the central part of the bog due to greater overall thickness. Study results highlight how the hydrology of apparently isolated obotrophic raised bog ecosystems may be influenced by groundwater pressures in deeper deposits, and how marginal drains may have the capacity to impact areas at significant distances.
Resumo:
The ecological footprint is now a widely accepted indicator of sustainable
development. Footprinting translates resource consumption into the land area
required to sustain it, and allows for an average per capita footprint for a region
or nation to be compared with the global average. This paper reports on a project
in which footprints were calculated for two Irish cities, namely Belfast in
Northern Ireland and Limerick in the Republic of Ireland for the year 2001. As
is frequently the case at sub-national scale, data quality and availability were
often problematic, and in general data gaps were filled by means of population
proxies or national averages. A range of methods was applied to convert
resource flows to land areas. Both footprints suggest that the lifestyles of citizens
of the cities use several times more land than their global share, as has been
found for other cities.
Resumo:
This paper demonstrates that there can be a legacy of contamination on former arable land in remote rural areas as a result of past manuring practices. In the first part of the study four farms abandoned in the late 19th to mid-20th century were investigated with samples collected from residual material in domestic hearths, the midden heaps, kailyards (walled garden for vegetables), infields (intensively managed arable land) and outfields (less intensively managed land for cropping or grazing). Consistent sequences in concentration values were found for such elements as Pb, Zn, Cu and P in the order hearth>midden>kailyard>infield>outfield. Such patterns can in part be explained in terms of atmospheric deposition on peat and turf which were subsequently burnt in hearths to result in enhanced elemental concentrations. The ash then was deposited in midden heaps and subsequently on kailyards or infields. In the second part, microanalytical results from St. Kilda are discussed. Enhanced loadings of Pb and Zn were found in the old arable land. The highest levels of Zn were found in small fragments of carbonised and humified material and bone fragments; in contrast Pb tended to be more uniformly distributed. Seabird waste was extensively applied to the arable land and some of the Zn may have accumulated in the soil by this pathway. The retention of Zn in bone is likely to have been very minor given the rarity of bone fragments as evident in thin sections (0.3%); this compares with 6.8% for black carbonised particles which are likely to provide the main storage sites for Zn.
Resumo:
To examine the functional abilities of extremely low birthweight (ELBW, <or = 800 g) children at school age compared with full term children.
Resumo:
This paper addresses the problem of optimally locating intermodal freight terminals in Serbia. To solve this problem and determine the effects of the resulting scenarios, two modeling approaches were combined. The first approach is based on multiple-assignment hub-network design, and the second is based on simulation. The multiple-assignment p-hub network location model was used to determine the optimal location of intermodal terminals. Simulation was used as a tool to estimate intermodal transport flow volumes, due to the unreliability and unavailability of specific statistical data, and as a method for quantitatively analyzing the economic, time, and environmental effects of different scenarios of intermodal terminal development. The results presented here represent a summary, with some extension, of the research realized in the IMOD-X project (Intermodal Solutions for Competitive Transport in Serbia).
Resumo:
Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS) to investigate the role of the human middle temporal visual motion area (MT+/V5) and superior parieto-occipital cortex (SPOC) in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception.
Resumo:
Marine Protected Areas (MPAs) are an important conservation tool. For marine predators, recent research has focused on the use of Species Distribution Models (SDMs) to identify proposed sites. We used a maximum entropy modelling approach based on static and dynamic oceanographic parameters to determine optimal feeding habitat for black-legged kittiwakes (Rissa tridactyla) at two colonies during two consecutive breeding seasons (2009 and 2010). A combination of Geographic Positioning System (GPS) loggers and Time-Depth Recorders (TDRs) attributed feeding activity to specific locations. Feeding areas were <30 km from the colony, <40 km from land, in productive waters, 25–175m deep. The predicted extent of optimal habitat declined at both colonies between 2009 and 2010 coincident with declines in reproductive success. Whilst the area of predicted optimal habitat changed, its location was spatially stable between years. There was a close match between observed feeding locations and habitat predicted as optimal at one colony (Lambay Island, Republic of Ireland), but a notable mismatch at the other (Rathlin Island, Northern Ireland). Designation of an MPA at Rathlin may, therefore, be less effective than a similar designation at Lambay perhaps due to the inherent variability in currents and sea state in the North Channel compared to the comparatively stable conditions in the central Irish Sea. Current strategies for designating MPAs do not accommodate likely future redistribution of resources due to climate change. We advocate the development of new approaches including dynamic MPAs that track changes in optimal habitat and non-colony specific ecosystem management.
Resumo:
Mitigation of diffuse nutrient and sediment delivery to streams requires successful identification andmanagement of critical source areas within catchments. Approaches to predicting high risk areas forsediment loss have typically relied on structural drivers of connectivity and risk, with little considera-tion given to process driven water quality responses. To assess the applicability of structural metrics topredict critical source areas, geochemical tracing of land use sources was conducted in three headwateragricultural catchments in Co. Down and Co. Louth, Ireland, within a Monte Carlo framework. Outputswere applied to the inverse optimisation of a connectivity model, based on LiDAR DEM data, to assess theefficacy of land use risk weightings to predict sediment source contributions over the 18 month studyperiod in the Louth Upper, Louth Lower and Down catchments. Results of the study indicated sedimentproportions over the study period varied from 6 to 10%, 84 to 87%, 4%, and 2 to 3% for the Down Catch-ment, 79 to 85%, 9 to 17%, 1 to 3% and 2 to 3% in the Louth Upper and 2 to 3%, 79 to 85%, 10 to 17%and 2 to 3% in the Louth Lower for arable, channel bank, grassland, and woodland sources, respectively.Optimised land use risk weightings for each sampling period showed that at the larger catchment scale,no variation in median land use weightings were required to predict land use contributions. However,for the two smaller study catchments, variation in median risk weightings was considerable, which mayindicate the importance of functional connectivity processes at this spatial scale. In all instances, arableland consistently generated the highest risk of sediment loss across all catchments and sampling times.This study documents some of the first data on sediment provenance in Ireland and indicates the needfor cautious consideration of land use as a tool to predict critical source areas at the headwater scale