973 resultados para Management|Geography|Remote sensing
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Provincetown, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1887, the edition date is July, 1889 and this map has a reprint date of January, 1900. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Taunton, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1885, the edition date is September, 1893 and this map has a reprint date of 1940. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
Federal Transit Administration, Washington, D.C.
Resumo:
Final report; April 1978.
Resumo:
Final report; April 1978.
Resumo:
The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.
Resumo:
Urban growth and change presents numerous challenges for planners and policy makers. Effective and appropriate strategies for managing growth and change must address issues of social, environmental and economic sustainability. Doing so in practical terms is a difficult task given the uncertainty associated with likely growth trends not to mention the uncertainty associated with how social and environmental structures will respond to such change. An optimization based approach is developed for evaluating growth and change based upon spatial restrictions and impact thresholds. The spatial optimization model is integrated with a cellular automata growth simulation process. Application results are presented and discussed with respect to possible growth scenarios in south east Queensland, Australia.
Resumo:
Remotely sensed data have been used extensively for environmental monitoring and modeling at a number of spatial scales; however, a limited range of satellite imaging systems often. constrained the scales of these analyses. A wider variety of data sets is now available, allowing image data to be selected to match the scale of environmental structure(s) or process(es) being examined. A framework is presented for use by environmental scientists and managers, enabling their spatial data collection needs to be linked to a suitable form of remotely sensed data. A six-step approach is used, combining image spatial analysis and scaling tools, within the context of hierarchy theory. The main steps involved are: (1) identification of information requirements for the monitoring or management problem; (2) development of ideal image dimensions (scene model), (3) exploratory analysis of existing remotely sensed data using scaling techniques, (4) selection and evaluation of suitable remotely sensed data based on the scene model, (5) selection of suitable spatial analytic techniques to meet information requirements, and (6) cost-benefit analysis. Results from a case study show that the framework provided an objective mechanism to identify relevant aspects of the monitoring problem and environmental characteristics for selecting remotely sensed data and analysis techniques.
Resumo:
The normalised difference vegetation index (NDVI) has evolved as a primary tool for monitoring continental-scale vegetation changes and interpreting the impact of short to long-term climatic events on the biosphere. The objective of this research was to assess the nature of relationships between precipitation and vegetation condition, as measured by the satellite-derived NDVI within South Australia. The correlation, timing and magnitude of the NDVI response to precipitation were examined for different vegetation formations within the State (forest, scrubland, shrubland, woodland and grassland). Results from this study indicate that there are strong relationships between precipitation and NDVI both spatially and temporally within South Australia. Differences in the timing of the NDVI response to precipitation were evident among the five vegetation formations. The most significant relationship between rainfall and NDVI was within the forest formation. Negative correlations between NDVI and precipitation events indicated that vegetation green-up is a result of seasonal patterns in precipitation. Spatial patterns in the average NDVI over the study period closely resembled the boundaries of the five classified vegetation formations within South Australia. Spatial variability within the NDVI data set over the study period differed greatly between and within the vegetation formations examined depending on the location within the state. ACRONYMS AVHRR Advanced Very High Resolution Radiometer ENVSAEnvironments of South Australia EOS Terra-Earth Observing System EVIEnhanced Vegetation Index MODIS Moderate Resolution Imaging Spectro-radiometer MVC Maximum Value Composite NDVINormalised Difference Vegetation Index NIRNear Infra-Red NOAANational Oceanic and Atmospheric Administration SPOT Systeme Pour l’Observation de la Terre. [ABSTRACT FROM AUTHOR]
Resumo:
In this paper we proposed a composite depth of penetration (DOP) approach to excluding bottom reflectance in mapping water quality parameters from Landsat thematic mapper (TM) data in the shallow coastal zone of Moreton Bay, Queensland, Australia. Three DOPs were calculated from TM1, TM2 and TM3, in conjunction with bathymetric data, at an accuracy ranging from +/-5% to +/-23%. These depths were used to segment the image into four DOP zones. Sixteen in situ water samples were collected concurrently with the recording of the satellite image. These samples were used to establish regression models for total suspended sediment (TSS) concentration and Secchi depth with respect to a particular DOP zone. Containing identical bands and their transformations for both parameters, the models are linear for TSS concentration, logarithmic for Secchi depth. Based on these models, TSS concentration and Secchi depth were mapped from the satellite image in respective DOP zones. Their mapped patterns are consistent with the in situ observed ones. Spatially, overestimation and underestimation of the parameters are restricted to localised areas but related to the absolute value of the parameters. The mapping was accomplished more accurately using multiple DOP zones than using a single zone in shallower areas. The composite DOP approach enables the mapping to be extended to areas as shallow as <3 m. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
For the managers of a region as large as the Great Barrier Reef, it is a challenge to develop a cost effective monitoring program, with appropriate temporal and spatial resolution to detect changes in water quality. The current study compares water quality data (phytoplankton abundance and water clarity) from remote sensing with field sampling (continuous underway profiles of water quality and fixed site sampling) at different spatial scales in the Great Barrier Reef north of Mackay (20 degrees S). Five transects (20-30 km long) were conducted from clean oceanic water to the turbid waters adjacent to the mainland. The different data sources demonstrated high correlations when compared on a similar spatial scale (18 fixed sites). However, each data source also contributed unique information that could not be obtained by the other techniques. A combination of remote sensing, underway sampling and fixed stations will deliver the best spatial and temporal monitoring of water quality in the Great Barrier Reef. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We address the practical issue of using thermal image data without adjustment or calibration for projects which do not require actual temperatures per se. Large scale airborne scanning in the thermal band at 8.5–13 μm was obtained for a mangrove and salt marsh in subtropical eastern Australia. For open sites, the raw image values were strongly positively correlated with ground level temperatures. For sites under mangrove canopy cover, image values indicated temperatures 2–4°C lower than those measured on the ground. The raw image was useful in identifying water bodies under canopy and has the potential for locating channel lines of deeper water. This could facilitate modification to increase flushing in the system, thereby reducing mosquito larval survival.