931 resultados para Mammalian cells
Resumo:
Eukaryotic initiation factor 2B (eIF-2B) is an essential component of the pathway of peptide-chain initiation in mammalian cells, yet little is known about its molecular structure and regulation. To investigate the structure, regulation, and interactions of the individual subunits of eIF-2B, we have begun to clone, characterize, and express the corresponding cDNAs. We report here the cloning and characterization of a 1510-bp cDNA encoding the alpha subunit of eIF-2B from a rat brain cDNA library. The cDNA contains an open reading frame of 918 bp encoding a polypeptide of 305 aa with a predicted molecular mass of 33.7 kDa. This cDNA recognizes a single RNA species approximately 1.6 kb in length on Northern blots of RNA from rat liver. The predicted amino acid sequence contains regions identical to the sequences of peptides derived from bovine liver eIF-2B alpha subunit. Expression of this cDNA in vitro yields a peptide which comigrates with natural eIF-2B alpha in SDS/polyacrylamide gels. The predicted amino acid sequence exhibits 42% identity to that deduced for the Saccharomyces cerevisiae GCN3 protein, the smallest subunit of yeast eIF-2B. In addition, expression of the rat cDNA in yeast functionally complements a gcn3 deletion for the inability to induce histidine biosynthetic genes under the control of GCN4. These results strongly support the hypothesis that mammalian eIF-2 alpha and GCN3 are homologues. Southern blots indicate that the eIF-2B alpha cDNA also recognizes genomic DNA fragments from several other species, suggesting significant homology between the rat eIF-2B alpha gene and that from other species.
Resumo:
These studies were initiated to elucidate the mechanism of DNA nuclear transport in mammalian cells. Biotin- or gold-labeled plasmid and plasmid DNA expression vectors for Escherichia coli beta-galactosidase or firefly luciferase were microinjected into the cytoplasm of primary rat myotubes in culture. Plasmid DNA was expressed in up to 70% of the injected myotubes, which indicates that it entered intact, postmitotic nuclei. The nuclear transport of plasmid DNA occurred through the nuclear pore by a process common to other large karyophilic macromolecules. The majority of the injected plasmid DNA was sequestered by cytoplasmic elements. This understanding of plasmid DNA nuclear transport provides a basis for increasing the efficiency of gene transfer.
Resumo:
The rat glucocorticoid receptor confers hormone-dependent transcriptional enhancement when expressed in yeast, thereby enabling the genetic identification of nonreceptor proteins that function in the hormone signal-transduction pathway. We isolated a yeast mutant, lem1, with increased sensitivity to dexamethasone and triamcinolone acetonide; responsiveness to a third agonist, deoxycorticosterone, is unaffected. Cloning of wild-type LEM1 revealed a putative transport protein of the ATP-binding cassette family. Dexamethasone accumulation is increased in lem1 cells, suggesting that wild-type LEM1 decreases dexamethasone potency by exporting this ligand. LEM1 appears to affect certain steroids and not others. We propose that transporters like LEM1 can selectively modulate the intracellular levels of steroid hormones. Differential activities of such transporters in mammalian cells might regulate hormone availability and thereby hormone signaling in a cell-type specific manner.
Resumo:
A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found in all PI-PLCs identified to date. In mammalian cells, there are three types of PI-PLC, PLC-beta, -gamma, and -delta. The overall structure of the putative AtPLC1 protein is most similar to that of PLC-delta, although the AtPLC1 protein is much smaller than PLCs from other organisms. The recombinant AtPLC1 protein synthesized in Escherichia coli was able to hydrolyze phosphatidylinositol 4,5-bisphosphate and this activity was completely dependent on Ca2+, as observed also for mammalian PI-PLCs. These results suggest that the AtPLC1 gene encodes a genuine PI-PLC of a higher plant. Northern blot analysis showed that the AtPLC1 gene is expressed at very low levels in the plant under normal conditions but is induced to a significant extent under various environmental stresses, such as dehydration, salinity, and low temperature. These observations suggest that AtPLC1 might be involved in the signal-transduction pathways of environmental stresses and that an increase in the level of AtPLC1 might amplify the signal, in a manner that contributes to the adaptation of the plant to these stresses.
Resumo:
Mammalian class A macrophage-specific scavenger receptors (SR-A) exhibit unusually broad binding specificity for a wide variety of polyanionic ligands. The properties of these receptors suggest that they may be involved in atherosclerosis and host defense. We have previously observed a similar receptor activity in Drosophila melanogaster embryonic macrophages and in the Drosophila macrophage-like Schneider L2 cell line. Expression cloning was used to isolate from L2 cells a cDNA that encodes a third class (class C) of scavenger receptor, Drosophila SR-CI (dSR-CI). dSR-CI expression was restricted to macrophages/hemocytes during embryonic development. When expressed in mammalian cells, dSR-CI exhibited high affinity and saturable binding of 125I-labeled acetylated low density lipoprotein and mediated its chloroquine-dependent, presumably lysosomal, degradation. Although the broad polyanionic ligand-binding specificity of dSR-CI was similar to that of SR-A, their predicted protein sequences are not similar. dSR-CI is a 609-residue type I integral membrane protein containing several well-known sequence motifs, including two complement control protein (CCP) domains and somatomedin B, MAM, and mucin-like domains. Macrophage scavenger receptors apparently mediate important, well-conserved functions and may be pattern-recognition receptors that arose early in the evolution of host-defense mechanisms. Genetic and physiologic analysis of dSR-CI function in Drosophila should provide further insights into the roles played by scavenger receptors in host defense and development.
Resumo:
Coxiella burnetii is a Gram-negative obligate parasitic bacterium that causes the disease Q-fever in humans. To establish its intracellular niche, it utilizes the Icm/Dot type IVB secretion system (T4BSS) to inject protein effectors into the host cell cytoplasm. The host targets of most cognate and candidate T4BSS-translocated effectors remain obscure. We used the yeast Saccharomyces cerevisiae as a model to express and study six C. burnetii effectors, namely AnkA, AnkB, AnkF, CBU0077, CaeA and CaeB, in search for clues about their role in C. burnetii virulence. When ectopically expressed in HeLa cells, these effectors displayed distinct subcellular localizations. Accordingly, GFP fusions of these proteins produced in yeast also decorated distinct compartments, and most of them altered cell growth. CaeA was ubiquitinated both in yeast and mammalian cells and, in S. cerevisiae, accumulated at juxtanuclear quality-control compartments (JUNQs) and insoluble protein deposits (IPODs), characteristic of aggregative or misfolded proteins. AnkA, which was not ubiquitinated, accumulated exclusively at the IPOD. CaeA, but not AnkA or the other effectors, caused oxidative damage in yeast. We discuss that CaeA and AnkA behavior in yeast may rather reflect misfolding than recognition of conserved targets in the heterologous system. In contrast, CBU0077 accumulated at vacuolar membranes and abnormal ER extensions, suggesting that it interferes with vesicular traffic, whereas AnkB associated with the yeast nucleolus. Both effectors shared common localization features in HeLa and yeast cells. Our results support the idea that C. burnetii T4BSS effectors manipulate multiple host cell targets, which can be conserved in higher and lower eukaryotic cells. However, the behavior of CaeA and AnkA prompt us to conclude that heterologous protein aggregation and proteostatic stress can be a limitation to be considered when using the yeast model to assess the function of bacterial effectors.
Resumo:
Em estudos de terapia gênica e vacinação por DNA, a eficiência e a segurança dos vetores que transportam o material genético terapêutico possuem papel fundamental. Vetores não virais são considerados mais seguros, mas menos eficientes em relação aos vetores virais. Em parte, isso se deve à falta de estudos sistemáticos e comparativos no que diz respeito às características físico-químicas desses vetores quando em soluções biológicas e o efeito delas sobre a eficiência de entrega gênica. O objetivo deste trabalho é avaliar o efeito do pH, da força iônica e do tipo tampão de complexação sobre as características físico-químicas de nanopartículas pDNA-protamina e pDNA-protamina-lipofectamina, visando à entrega gênica para diferentes linhagens celulares. Para isso, nanopartículas formadas em diferentes condições foram caracterizadas através de ensaios de espalhamento dinâmico de luz (DLS) e potencial zeta. Os estudos indicaram que o pH, a força iônica, o tipo de tampão e a presença de meio de cultura e soro no ambiente de complexação alteram significativamente o tamanho, a polidispersidade e o potencial zeta das partículas formadas. Finalmente, buscou-se avaliar o efeito dessas características sobre a eficiência de transfecção in vitro de células de macrófagos IC21 e células HeLa. Os estudos de transfecção em células Hela indicam que tanto a composição como as condições de formação das partículas influenciam significativamente a eficiência de transfecção.
Resumo:
A nanotecnologia tem sido aplicada para o desenvolvimento de materiais para diversas aplicações inclusive na inativação de patógenos. As nanopartículas de sílica (npSi) destacam-se pela alta área superficial, facilidade na alteração da superfície para aumento da eficiência adsortiva, penetrabilidade e toxicidade para bactérias gram-negativas sendo biocompatíveis para células de mamíferos e mais foto-estáveis que a maioria dos compostos orgânicos. Devido as suas vantagens, as npSi podem ser usadas para veicular fotossensibilizadores (FSs) uma vez que permitem sua utilização em solução aquosa em que os FSs geralmente são insolúveis. Além disso, o uso de FSs em vez de antibióticos, permite a inativação microbiológica pela Terapia Fotodinâmica sem que as bactérias adquiram resistência por mecanismos genéticos. Esse processo ocorre pela interação entre um FS, luz e oxigênio molecular produzindo oxigênio singleto que é extremamente reativo danificando estruturas celulares. O objetivo desse estudo foi otimizar a fotoinativação dinâmica de E .coli utilizando Azul de Metileno (AM) e Azul de Toluidina O (ATO) veiculados por npSi. As npSi foram preparadas pela metodologia sol-gel, caracterizadas por microscopia eletrônica de varredura (MEV) e submetidas à adsorção de AM e ATO em sua superfície. A presença de AM e ATO na superfície das npSi foram analisadas por espectroscopia no infravermelho; espectroscopia de fluorescência por raio-X e análise termogravimétrica. O planejamento experimental, iniciado pelo fatorial 23 e modelado ao composto central em busca das condições ótimas foi adotado pela primeira vez nessa aplicabilidade, visando a fotoinativação de E. coli empregando AM e ATO em solução e em seguida com npSi. AM e ATO veiculados por npSi permitem a fotoinativação em concentrações mais baixas de FS (20 e 51% respectivamente), causando desestruturação da integridade bacteriana demonstrada por MEV. Os resultados sugerem que a veiculação de AM e ATO por npSi é extremamente efetiva para a fotoinativação dinâmica de E. coli e que o planejamento composto central pode levar à completa inativação das bactérias.
Resumo:
Gene targeting protocols for mammalian cells remain inefficient and labor intensive. Here we describe FASTarget, a rapid, fluorescent cell sorting based strategy to isolate rare gene targeting events in human somatic cells. A fluorescent protein is used as a means for direct selection of targeted clones obviating the need for selection and outgrowth of drug resistant clones. Importantly, the use of a promoter-less, ATG-less construct greatly facilitates the recovery of correctly targeted cells. Using this method we report successful gene targeting in up to 94% of recovered human somatic cell clones. We create functional EYFP-tagged knockin clones in both transformed and non-transformed human somatic cell lines providing a valuable tool for mammalian cell biology. We further demonstrate the use of this technology to create gene knockouts. Using this generally applicable strategy we can recover gene targeted clones within approximately one month from DNA construct delivery to obtaining targeted monoclonal cell lines.
Resumo:
The NF-κB family member p65 is central to inflammation and immunity. The purpose of this study was to identify and characterize evolutionary conserved genes modulating p65 transcriptional activity. Using an RNAi screening approach, we identified chaperonin containing TCP1 subunit η (CCTη) as a regulator of Drosophila NF-κB proteins, Dorsal and Dorsal-related immunity factor (Dif). CCTη was also found to regulate NF-κB-driven transcription in mammalian cells, acting in a promoter-specific context, downstream of IκB kinase (IKK). CCTη knockdown repressed IκBα and CXCL2/MIP2 transcription during the early phase of NF-κB activation while impairing the termination of CCL5/RANTES and CXCL10/IP10 transcription. The latter effect was associated with increased DNA binding and reduced p65 acetylation, presumably by altering the activity of histone acetyltransferase CREB-binding protein (CBP). We identified p65 lysines (K) 122 and 123 as target residues mediating the CCTη-driven termination of NF-κB-dependent transcription. We propose that CCTη regulates NF-κB activity in a manner that resolves inflammation.
Resumo:
Artemisinin is an antimalarial sesquiterpene lactone that contains a 1,2,4-trioxane heterocycle. Dihydroartemisinin and artesunate demonstrated activity against Echinococcus multilocularis metacestodes in vitro but were not effective in a mouse model. In this study, the in vitro effects of a small library of synthetic ozonides (1,2,4-trioxolanes) were investigated. Initial compound screening against E. multilocularis metacestodes was performed at 20μM, and selected ozonides were further assessed in dose-response studies in metacestode cultures and mammalian cells. Transmission electron microscopy (TEM) was employed to characterise compound-induced structural alterations. At 20μM, the most potent ozonides (OZ401, OZ455, OZ491 and OZ494) led to death of ca. 60-100% of the parasites. Subsequent dose-response experiments demonstrated that OZ401, OZ455 and OZ491, which contain an aminopropylether substructure, were the most potent, with 50% inhibitory concentrations ranging from 11μM to 14μM. Cytotoxicity for these three ozonides, assessed in human foreskin fibroblasts, rat hepatoma cells and green monkey epithelial kidney (Vero) cells, was evident only at high concentrations. TEM demonstrated that OZ401 and OZ491 treatment induced considerable metabolic impairment in metacestodes at 1 day post exposure. At Day 3 post exposure, the germinal layer was severely distorted, although some intact cells were still visible, demonstrating that not all cell types in the parasite tissue were equally affected. Complete destruction of the germinal layer was noted at 5 days post exposure. Synthetic ozonides could represent interesting leads that will be further investigated in a suitable in vivo model of E. multilocularis infection.
Resumo:
BACKGROUND & AIMS The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. METHODS By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. RESULTS After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. CONCLUSIONS Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. LAY SUMMARY Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
We have employed an inverse engineering strategy based on quantitative proteome analysis to identify changes in intracellular protein abundance that correlate with increased specific recombinant monoclonal antibody production (qMab) by engineered murine myeloma (NSO) cells. Four homogeneous NSO cell lines differing in qMab were isolated from a pool of primary transfectants. The proteome of each stably transfected cell line was analyzed at mid-exponential growth phase by two-dimensional gel electrophoresis (2D-PAGE) and individual protein spot volume data derived from digitized gel images were compared statistically. To identify changes in protein abundance associated with qMab clatasets were screened for proteins that exhibited either a linear correlation with cell line qMab or a conserved change in abundance specific only to the cell line with highest qMab. Several proteins with altered abundance were identified by mass spectrometry. Proteins exhibiting a significant increase in abundance with increasing qMab included molecular chaperones known to interact directly with nascent immunoglobulins during their folding and assembly (e.g., BiP, endoplasmin, protein disulfide isomerase). 2D-PAGE analysis showed that in all cell lines Mab light chain was more abundant than heavy chain, indicating that this is a likely prerequisite for efficient Mab production. In summary, these data reveal both the adaptive responses and molecular mechanisms enabling mammalian cells in culture to achieve high-level recombinant monoclonal antibody production. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.