949 resultados para MacPherson, Annie.
Resumo:
The inflammasome is a complex of proteins that controls the activity of caspase-1, pro-IL-1b and pro-IL-18. It acts in inflammatory processes and in pyropoptosis. The lower intestine is densely populated by a community of commensal bacteria that, under healthy conditions, are beneficial to the host. Some evidence suggests that the gut microbiota influences regulation of the inflammasome. Components of inflammasomes have been shown to have a protective function against development of experimental colitis, dependent on IL-18 production. However the precise mechanisms and the role of the inflammasome in maintaining a healthy host-microbial mutualism remains unknown. To address this question, we have performed axenic (GF) and gnotobiotic in vivo experiments to investigate how the inflammasome components mainly at the level of intestinal epithelial cells (IECs) are regulated under different hygiene conditions. We have established that gene expression of the inflammasome components NLRC4, NLRP3, NLRP6, NLRP12, caspase-1, ASC and IL-18 do not differ between germ-free and colonised conditions under steady-state. In contrast, induction in IL-18 was observed following infection with the pathobiont Segmented Filamentous Bacteria or the pathogen C. rodentium. Additional preliminar findings suggest that a more diverse intestinal flora, like specific pathogen-free (SPF) flora, is more efficient in inducing basal activation of the inflammasome and especially production of IL-18 by IECs, shortly after colonisation. We are also in the process of testing if basal activation of the inflammasome upon intestinal colonization with commensal bacteria helps to protect the host from potential pathobiont bacteria, like C. rodentium, SFB, Prevotella and TM7.
Resumo:
Salmonella enterica subspecies 1 serovar Typhimurium is a common cause of bacterial enterocolitis. Mice are generally protected from Salmonella serovar Typhimurium colonization and enterocolitis by their resident intestinal microflora. This phenomenon is called "colonization resistance" (CR). Two murine Salmonella serovar Typhimurium infection models are based on the neutralization of CR: (i) in specific-pathogen-free mice pretreated with streptomycin (StrSPF mice) antibiotics disrupt the intestinal microflora; and (ii) germfree (GF) mice are raised without any intestinal microflora, but their intestines show distinct physiologic and immunologic characteristics. It has been unclear whether the same pathogenetic mechanisms trigger Salmonella serovar Typhimurium colitis in GF and StrSPF mice. In this study, we compared the two colitis models. In both of the models Salmonella serovar Typhimurium efficiently colonized the large intestine and triggered cecum and colon inflammation starting 8 h postinfection. The type III secretion system encoded in Salmonella pathogenicity island 1 was essential in both disease models. Thus, Salmonella serovar Typhimurium colitis is triggered by similar pathogenetic mechanisms in StrSPF and GF mice. This is remarkable considering the distinct physiological properties of the GF mouse gut. One obvious difference was more pronounced damage and reduced regenerative response of the cecal epithelium in GF mice. Overall, StrSPF mice and GF mice provide similar but not identical models for Salmonella serovar Typhimurium colitis.
Resumo:
Myeloproliferative neoplasms (MPNs) are characterized by the clonal expansion of one or more myeloid cell lineage. In most cases, proliferation of the malignant clone is ascribed to defined genetic alterations. MPNs are also associated with aberrant expression and activity of multiple cytokines; however, the mechanisms by which these cytokines contribute to disease pathogenesis are poorly understood. Here, we reveal a non-redundant role for steady-state IL-33 in supporting dysregulated myelopoiesis in a murine model of MPN. Genetic ablation of the IL-33 signaling pathway was sufficient and necessary to restore normal hematopoiesis and abrogate MPN-like disease in animals lacking the inositol phosphatase SHIP. Stromal cell-derived IL-33 stimulated the secretion of cytokines and growth factors by myeloid and non-hematopoietic cells of the BM, resulting in myeloproliferation in SHIP-deficient animals. Additionally, in the transgenic JAK2V617F model, the onset of MPN was delayed in animals lacking IL-33 in radio-resistant cells. In human BM, we detected increased numbers of IL-33-expressing cells, specifically in biopsies from MPN patients. Exogenous IL-33 promoted cytokine production and colony formation by primary CD34+ MPN stem/progenitor cells from patients. Moreover, IL-33 improved the survival of JAK2V617F-positive cell lines. Together, these data indicate a central role for IL-33 signaling in the pathogenesis of MPNs.
Resumo:
Mercury (Hg) contamination is a global issue due to its anthropogenic release, long-range transport, and deposition in remote areas. In Kejimkujik National Park and National Historic Site, Nova Scotia, Canada, high concentrations of total mercury (THg) were found in tissues of yellow perch (Perca flavescens). The aim of this study was to evaluate a possible relationship between THg concentrations and the morphology of perch liver as a main site of metal storage and toxicity. Yellow perch were sampled from five lakes known to contain fish representing a wide range in Hg concentrations in fall 2013. The ultrastructure of hepatocytes and the distribution of Hg within the liver parenchyma were analyzed by transmission electron microscopy (TEM) and electron energy loss spectrometry (EELS). The relative area of macrophage aggregates (MAs) in the liver was determined using image analysis software and fluorescence microscopy. No relation between general health indicators (Fulton's condition index) and THg was observed. In line with this, TEM examination of the liver ultrastructure revealed no prominent pathologies related to THg accumulation. However, a morphological parameter that appeared to increase with muscle THg was the relative area of MAs in the liver. The hepatic lysosomes appeared to be enlarged in samples with the highest THg concentrations. Interestingly, EELS analysis revealed that the MAs and hepatic lysosomes contained Hg.
Resumo:
Current therapies to treat inflammatory bowel diseases have limited efficacy, significant side effects, and often wane over time. Little is known about the cellular and molecular mechanisms operative in the process of mucosal healing from colitis. To study such events, we developed a new model of reversible colitis in which adoptive transfer of CD4(+)CD45RB(hi) T cells into Helicobacter typhlonius-colonized lymphopenic mice resulted in a rapid onset of colonic inflammation that was reversible through depletion of colitogenic T cells. Remission was associated with an improved clinical and histopathological score, reduced immune cell infiltration to the intestinal mucosa, altered intestinal gene expression profiles, regeneration of the colonic mucus layer, and the restoration of epithelial barrier integrity. Notably, colitogenic T cells were not only critical for induction of colitis but also for maintenance of disease. Depletion of colitogenic T cells resulted in a rapid drop in tumor necrosis factor α (TNFα) levels associated with reduced infiltration of inflammatory immune cells to sites of inflammation. Although neutralization of TNFα prevented the onset of colitis, anti-TNFα treatment of mice with established disease failed to resolve colonic inflammation. Collectively, this new model of reversible colitis provides an important research tool to study the dynamics of mucosal healing in chronic intestinal remitting-relapsing disorders.Mucosal Immunology advance online publication 16 September 2015; doi:10.1038/mi.2015.93.
The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation.
Resumo:
Intestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions.