978 resultados para MOLYBDENA-ALUMINA CATALYSTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic materials the alumina base are large industrial applications. They are required for these products, specific characteristics obtained by following strict criteria during the manufacturing process. However, after life, not always these products are reused by a suitable waste management process. In ceramist context, advance research aimed at the reuse of waste aimed at obtaining ceramics and composite materials, with marked reduction of conventional raw materials. Aiming to generate scientific, technological and environmental contribution, this work studied to obtain a composite of alumina ceramic (Al2O3) and sodium beta alumina (NaAl11O17 ), and as starting materials the residue of the ceramic insulator of spark plugs, as a source alumina (Al2O3) powder and unusable sodium bicarbonate (NaHCO3) of fire extinguishers, as a source of sodium oxide (Na2O). The final ceramic product was obtained from a conventional mixture of sodium aluminum oxide in appropriate molar proportions. Sample spark plugs were obtained, discarded by lifetime, specific to a manufacturer, which, after passing through mechanical stress (grinding, magnetic purification, washing, drying and grinding the high energy), which resulted in residue powder with ceramic content of 84.34 % alumina (Al2O3), found by FRX chemical analysis, the phases present and identified by DRX. The dry chemical fire extinguisher, baking soda-based (NaHCO3) with expired, was obtained through direct collection of the waste generated during maintenance. Subjected to heat treatment at 120 °C , the NaHCO3 powder was decomposed in sodium oxide ( Na2O), which, subjected to chemical analysis (FRX) and mineralogical (DRX) revealed a content of 86.62 % sodium oxide (Na2O) . In the following steps the experimental procedure, chemical formulations were made on a molar basis of the starting material (1:9, 1:10 and 1:11 de Na2O/ Al2O3) inclusion of additives, milling parameters, sieve analysis, dilatometry, conformation of specimens, sintering in firing steps at 800 °C , 1000 °C and 1.200 °C with varying stays 30 , 60 and 120 minutes in each of the levels. The characterization of the final product was made by the following physical tests: water absorption, porosity, linear shrinkage, mineralogical analysis by DRX and microstructural analysis by MEV. A higher formation of sodium beta alumina (NaAl11O17), in sintered specimens in levels of 1.200 °C and 120 minutes, despite the prevailing coexistence of alpha phase alumina (Al2O3). From the results obtained opens up prospects for the reuse of waste studied in this work, the potter context and in other technological areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic materials the alumina base are large industrial applications. They are required for these products, specific characteristics obtained by following strict criteria during the manufacturing process. However, after life, not always these products are reused by a suitable waste management process. In ceramist context, advance research aimed at the reuse of waste aimed at obtaining ceramics and composite materials, with marked reduction of conventional raw materials. Aiming to generate scientific, technological and environmental contribution, this work studied to obtain a composite of alumina ceramic (Al2O3) and sodium beta alumina (NaAl11O17 ), and as starting materials the residue of the ceramic insulator of spark plugs, as a source alumina (Al2O3) powder and unusable sodium bicarbonate (NaHCO3) of fire extinguishers, as a source of sodium oxide (Na2O). The final ceramic product was obtained from a conventional mixture of sodium aluminum oxide in appropriate molar proportions. Sample spark plugs were obtained, discarded by lifetime, specific to a manufacturer, which, after passing through mechanical stress (grinding, magnetic purification, washing, drying and grinding the high energy), which resulted in residue powder with ceramic content of 84.34 % alumina (Al2O3), found by FRX chemical analysis, the phases present and identified by DRX. The dry chemical fire extinguisher, baking soda-based (NaHCO3) with expired, was obtained through direct collection of the waste generated during maintenance. Subjected to heat treatment at 120 °C , the NaHCO3 powder was decomposed in sodium oxide ( Na2O), which, subjected to chemical analysis (FRX) and mineralogical (DRX) revealed a content of 86.62 % sodium oxide (Na2O) . In the following steps the experimental procedure, chemical formulations were made on a molar basis of the starting material (1:9, 1:10 and 1:11 de Na2O/ Al2O3) inclusion of additives, milling parameters, sieve analysis, dilatometry, conformation of specimens, sintering in firing steps at 800 °C , 1000 °C and 1.200 °C with varying stays 30 , 60 and 120 minutes in each of the levels. The characterization of the final product was made by the following physical tests: water absorption, porosity, linear shrinkage, mineralogical analysis by DRX and microstructural analysis by MEV. A higher formation of sodium beta alumina (NaAl11O17), in sintered specimens in levels of 1.200 °C and 120 minutes, despite the prevailing coexistence of alpha phase alumina (Al2O3). From the results obtained opens up prospects for the reuse of waste studied in this work, the potter context and in other technological areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Date of Acceptance: 01/06/2015 We thank the University of Aberdeen for financial support and A.I. McNab (University of Aberdeen) for discussions involving the calculation of surface sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Date of Acceptance: 01/06/2015 We thank the University of Aberdeen for financial support and A.I. McNab (University of Aberdeen) for discussions involving the calculation of surface sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements We thank the University of Aberdeen for financial support and Dr K. McManus (University of Aberdeen) for performing preliminary experiments with these samples. Electron microscopy and EDS were performed by RTB at the Electron Microscopy Facility, University of St Andrews.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Date of Acceptance: 01/06/2015 We thank the University of Aberdeen for financial support and A.I. McNab (University of Aberdeen) for discussions involving the calculation of surface sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to tune the structural and chemical properties of colloidal nanoparticles (NPs), make them highly advantageous for studying activity and selectivity dependent catalytic behaviour. Incorporating pre-synthesized colloidal NPs into porous supports materials remains a challenge due to poor wetting and pore permeability. In this report monodisperse, composition controlled AgPd alloy NPs were synthesised and embedded into SBA-15 using supercritical carbon dioxide and hexane. Supercritical fluid impregnation resulted in high metal loading without the requirement for surface pre-treatments. The catalytic activity, reaction profiles and recyclability of the alloy NPs embedded in SBA-15 and immobilised on non-porous SiO2 are evaluated. The NPs incorporated within the SBA-15 porous network showed significantly greater recyclability performance compared to non-porous SiO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for assessing the activity of a powdered water oxidation catalyst (WOC) is described, utilising an easily-prepared wireless rotating disc electrode of the WOC, thereby allowing its activity to be probed, via the observed kinetics of water oxidation by Ce(IV) ions, and so provide invaluable electrochemical information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Faraday Discussion on the design of new heterogeneous catalysts took place from 4-6 April 2016 in London, United Kingdom. It brought together world leading scientists actively involved in the synthesis, characterisation, modelling and testing of solid catalysts, attracting more than one hundred delegates from a broad spectrum of backgrounds and experience levels-academic and industrial researchers, experimentalists and theoreticians, and students. The meeting was a reflection of how big of an impact the ability to control and design catalysts with specific properties for particular processes can potentially have on the chemical industry, environment, economy and society as a whole. In the following, we give an overview of the topics covered during this meeting and briefly highlight the content of each presentation.