970 resultados para Luminescence Phenomena
Resumo:
Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.
Resumo:
Adaptability and invisibility are hallmarks of modern terrorism, and keeping pace with its dynamic nature presents a serious challenge for societies throughout the world. Innovations in computer science have incorporated applied mathematics to develop a wide array of predictive models to support the variety of approaches to counterterrorism. Predictive models are usually designed to forecast the location of attacks. Although this may protect individual structures or locations, it does not reduce the threat—it merely changes the target. While predictive models dedicated to events or social relationships receive much attention where the mathematical and social science communities intersect, models dedicated to terrorist locations such as safe-houses (rather than their targets or training sites) are rare and possibly nonexistent. At the time of this research, there were no publically available models designed to predict locations where violent extremists are likely to reside. This research uses France as a case study to present a complex systems model that incorporates multiple quantitative, qualitative and geospatial variables that differ in terms of scale, weight, and type. Though many of these variables are recognized by specialists in security studies, there remains controversy with respect to their relative importance, degree of interaction, and interdependence. Additionally, some of the variables proposed in this research are not generally recognized as drivers, yet they warrant examination based on their potential role within a complex system. This research tested multiple regression models and determined that geographically-weighted regression analysis produced the most accurate result to accommodate non-stationary coefficient behavior, demonstrating that geographic variables are critical to understanding and predicting the phenomenon of terrorism. This dissertation presents a flexible prototypical model that can be refined and applied to other regions to inform stakeholders such as policy-makers and law enforcement in their efforts to improve national security and enhance quality-of-life.
Resumo:
La luminescence optique (OSL) a été mesurée sur dix-sept fragments de poterie collectés à Mailhot-Curran (BgFn-2), un site archéologique du Sylvicole supérieur tardif localisé dans le sud-ouest du Québec. Le but principal de ce projet était de dater ce site qui est considéré jusqu’à maintenant comme le plus récent site préhistorique de la concentration de Saint-Anicet, afin de poser un jalon dans la chronologie des sites de cette région. L’OSL a été utilisée conjointement à la datation par radiocarbone (14C) et la sériation du matériel archéologique. L’hypothèse archéologique propose que le village aurait été occupé pendant les années 1518 à 1530 de notre ère (Chapdelaine 2015a). Les résultats que nous proposons dans ce présent mémoire appuient cette proposition. Nous avons obtenu un âge de 490 ± 49 ans (année de référence : 2013), correspondant à l’année 1523 de notre ère avec une probabilité d’occupation du site Mailhot-Curran entre les années 1474 et 1572. Le programme de datation par luminescence optique a été réalisé sur des fragments de poterie domestique composés d’argile de la Mer de Champlain datant de la période du Quaternaire récent. La datation par stimulation infrarouge (IRSL) a été préférentiellement utilisée sur des aliquotes de grains fins polyminéraliques. Pour la détermination des doses équivalentes, un protocole SAR (Murray et Wintle 2000) modifié pour la mesure des feldspaths et incluant un lessivage optique a été utilisé (Lamothe et al. 2004). Les valeurs g ont été mesurées en suivant le protocole proposé par Auclair et al. (2003). La correction de Huntley et Lamothe (2001) a été utilisée afin de corriger les doses équivalentes mesurées pour la décroissance anormale du signal feldspathique. Les doses annuelles ont pour leur part été déterminées par des mesures réalisées in situ et en laboratoire. Les résultats que nous présentons dans ce mémoire sont affectés par une dispersion assez large. Cette variabilité a été prise en compte par des méthodes statistiques pour la détermination de l’âge probable de l’occupation du site Mailhot-Curran.
Resumo:
La luminescence optique (OSL) a été mesurée sur dix-sept fragments de poterie collectés à Mailhot-Curran (BgFn-2), un site archéologique du Sylvicole supérieur tardif localisé dans le sud-ouest du Québec. Le but principal de ce projet était de dater ce site qui est considéré jusqu’à maintenant comme le plus récent site préhistorique de la concentration de Saint-Anicet, afin de poser un jalon dans la chronologie des sites de cette région. L’OSL a été utilisée conjointement à la datation par radiocarbone (14C) et la sériation du matériel archéologique. L’hypothèse archéologique propose que le village aurait été occupé pendant les années 1518 à 1530 de notre ère (Chapdelaine 2015a). Les résultats que nous proposons dans ce présent mémoire appuient cette proposition. Nous avons obtenu un âge de 490 ± 49 ans (année de référence : 2013), correspondant à l’année 1523 de notre ère avec une probabilité d’occupation du site Mailhot-Curran entre les années 1474 et 1572. Le programme de datation par luminescence optique a été réalisé sur des fragments de poterie domestique composés d’argile de la Mer de Champlain datant de la période du Quaternaire récent. La datation par stimulation infrarouge (IRSL) a été préférentiellement utilisée sur des aliquotes de grains fins polyminéraliques. Pour la détermination des doses équivalentes, un protocole SAR (Murray et Wintle 2000) modifié pour la mesure des feldspaths et incluant un lessivage optique a été utilisé (Lamothe et al. 2004). Les valeurs g ont été mesurées en suivant le protocole proposé par Auclair et al. (2003). La correction de Huntley et Lamothe (2001) a été utilisée afin de corriger les doses équivalentes mesurées pour la décroissance anormale du signal feldspathique. Les doses annuelles ont pour leur part été déterminées par des mesures réalisées in situ et en laboratoire. Les résultats que nous présentons dans ce mémoire sont affectés par une dispersion assez large. Cette variabilité a été prise en compte par des méthodes statistiques pour la détermination de l’âge probable de l’occupation du site Mailhot-Curran.
Resumo:
In this book are published results of high-tech application of computational modeling and simulation the dynamics of different flows, heat and mass transfer in different fields of science and engineering.
Resumo:
In solid rocket motors, the absence of combustion controllability and the large amount of financial resources involved in full-scale firing tests, increase the importance of numerical simulations in order to asses stringent mission thrust requirements and evaluate the influence of thrust chamber phenomena affecting the grain combustion. Among those phenomena, grain local defects (propellant casting inclusions and debondings), combustion heat accumulation involving pressure peaks (Friedman Curl effect), and case-insulating thermal protection material ablation affect thrust prediction in terms of not negligible deviations with respect to the nominal expected trace. Most of the recent models have proposed a simplified treatment to the problem using empirical corrective functions, with the disadvantages of not fully understanding the physical dynamics and thus of not obtaining predictive results for different configurations of solid rocket motors in a boundary conditions-varied scenario. This work is aimed to introduce different mathematical approaches to model, analyze, and predict the abovementioned phenomena, presenting a detailed physical interpretation based on existing SRMs configurations. Internal ballistics predictions are obtained with an in-house simulation software, where the adoption of a dynamic three-dimensional triangular mesh together with advanced computer graphics methods, allows the previous target to be reached. Numerical procedures are explained in detail. Simulation results are carried out and discussed based on experimental data.
Resumo:
This thesis analyzes the impact of heat extremes in urban and rural environments, considering processes related to severely high temperatures and unusual dryness. The first part deals with the influence of large-scale heatwave events on the local-scale urban heat island (UHI) effect. The temperatures recorded over a 20-year summer period by meteorological stations in 37 European cities are examined to evaluate the variations of UHI during heatwaves with respect to non-heatwave days. A statistical analysis reveals a negligible impact of large-scale extreme temperatures on the local daytime urban climate, while a notable exacerbation of UHI effect at night. A comparison with the UrbClim model outputs confirms the UHI strengthening during heatwave episodes, with an intensity independent of the climate zone. The investigation of the relationship between large-scale temperature anomalies and UHI highlights a smooth and continuous dependence, but with a strong variability. The lack of a threshold behavior in this relationship suggests that large-scale temperature variability can affect the local-scale UHI even in different conditions than during extreme events. The second part examines the transition from meteorological to agricultural drought, being the first stage of the drought propagation process. A multi-year reanalysis dataset involving numerous drought events over the Iberian Peninsula is considered. The behavior of different non-parametric standardized drought indices in drought detection is evaluated. A statistical approach based on run theory is employed, analyzing the main characteristics of drought propagation. The propagation from meteorological to agricultural drought events is found to develop in about 1-2 months. The duration of agricultural drought appears shorter than that of meteorological drought, but the onset is delayed. The propagation probability increases with the severity of the originating meteorological drought. A new combined agricultural drought index is developed to be a useful tool for balancing the characteristics of other adopted indices.
Resumo:
Turbulence introduced into the intra-cluster medium (ICM) through cluster merger events transfers energy to non-thermal components (relativistic particles and magnetic fields) and can trigger the formation of diffuse synchrotron radio sources. Owing to their steep synchrotron spectral index, such diffuse sources can be better studied at low radio frequencies. In this respect, the LOw Frequency ARray (LOFAR) is revolutionizing our knowledge thanks to its unprecedented resolution and sensitivity below 200 MHz. In this Thesis we focus on the study of radio halos (RHs) by using LOFAR data. In the first part of this work we analyzed the largest-ever sample of galaxy clusters observed at radio frequencies. This includes 309 Planck clusters from the Second Data Release of the LOFAR Two Metre Sky Survey (LoTSS-DR2), which span previously unexplored ranges of mass and redshift. We detected 83 RHs, half of which being new discoveries. In 140 clusters we lack a detected RH; for this sub-sample we developed new techniques to derive upper limits to their radio powers. By comparing detections and upper limits, we carried out the first statistical analysis of populations of clusters observed at low frequencies and tested theoretical formation models. In the second part of this Thesis we focused on ultra-steep spectrum radio halos. These sources are almost undetected at GHz frequencies, but are thought to be common at low frequencies. We presented LOFAR observations of two interesting clusters hosting ultra-steep spectrum radio halos. With complementary radio and X-ray observations we constrained the properties and origin of these targets.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a large class of π-conjugated organic molecules with fused aromatic rings, which can be considered as fragments of 2D-graphene and have been extensively studied for their unique optical and electronic properties. The aim of this study is to understand the complex electrochemical behaviour of planar, curved, and heteroatom doped polycyclic aromatic molecules, particularly focusing on the oxidative coupling of their radical cations and the electrochemically induced cyclodehydrogenation reactions. In the first part of this thesis, the class of PAHs and aromatic nanostructures are introduced, and the reactivity of electrogenerated species is discussed, focusing on the electrochemical approach for the synthesis of extended π-conjugated structures. Subsequently, the electrochemical properties and reactivity of electrogenerated radical ions of planar and curved polyaromatics are correlated to their structures. In the third chapter, electrochemical cyclodehydrogenation of hexaphenylbenzene is used to prepare self-assembled hexabenzocoronene, directly deposited on an interdigitated electrode, which was characterised as organic electrochemical transistor. In the fourth chapter, the electrochemical behaviour of a family of azapyrene derivatives has been carefully investigated together with the electrogenerated chemiluminescence (ECL), both by ion-annihilation and co-reactant methods. Two structural azapyrene isomers with different nitrogen positions are thoroughly discussed in terms of redox and ECL properties. Interestingly, the ECL of only one of them showed a double emission with excimer formation. A detailed mechanism is discussed for the ECL by co-reactant benzoyl peroxide, to rationalise the different ECL behaviours of the two isomers on the basis of their topologically modulated electronic properties. In conclusion, the different electrochemical behaviours of PAHs were shown, focussing on the chemical reactivity of the electrogenerated species and taking advantage of it for important processes spanning from unconventional synthesis methods for carbon nanostructures to the exploitation of self-assembled nanostructured systems in organic electronics, to novel organic emitters in ECL.
Resumo:
In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique to analyze and model complex dynamic real-world systems is presented. This method derives, directly from data, computationally efficient reduced-order models (ROMs) which can replace too onerous or unavailable high-fidelity physics-based models. Optimizations and extensions to the standard implementation of the methodology are proposed, investigating diverse case studies related to the decoding of complex flow phenomena. The flexibility of this data-driven technique allows its application to high-fidelity fluid dynamics simulations, as well as time series of real systems observations. The resulting ROMs are tested against two tasks: (i) reduction of the storage requirements of high-fidelity simulations or observations; (ii) interpolation and extrapolation of missing data. The capabilities of DMD can also be exploited to alleviate the cost of onerous studies that require many simulations, such as uncertainty quantification analysis, especially when dealing with complex high-dimensional systems. In this context, a novel approach to address parameter variability issues when modeling systems with space and time-variant response is proposed. Specifically, DMD is merged with another model-reduction technique, namely the Polynomial Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD deployment result from the study, together with the demonstration of its potential to ease diagnosis and scenario analysis when complex flow processes are involved.
Resumo:
Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.
Resumo:
Biogeography and metacommunity ecology provide two different perspectives on species diversity. Both are spatial in nature but their spatial scales do not necessarily match. With recent boom of metacommunity studies, we see an increasing need for clear discrimination of spatial scales relevant for both perspectives. This discrimination is a necessary prerequisite for improved understanding of ecological phenomena across scales. Here we provide a case study to illustrate some spatial scale-dependent concepts in recent metacommunity studies and identify potential pitfalls. We presented here the diversity patterns of Neotropical lepidopterans and spiders viewed both from metacommunity and biogeographical perspectives. Specifically, we investigated how the relative importance of niche- and dispersal-based processes for community assembly change at two spatial scales: metacommunity scale, i.e. within a locality, and biogeographical scale, i.e. among localities widely scattered along a macroclimatic gradient. As expected, niche-based processes dominated the community assembly at metacommunity scale, while dispersal-based processes played a major role at biogeographical scale for both taxonomical groups. However, we also observed small but significant spatial effects at metacommunity scale and environmental effects at biogeographical scale. We also observed differences in diversity patterns between the two taxonomical groups corresponding to differences in their dispersal modes. Our results thus support the idea of continuity of processes interactively shaping diversity patterns across scales and emphasize the necessity of integration of metacommunity and biogeographical perspectives.
Resumo:
Calcium dynamics is central in cardiac physiology, as the key event leading to the excitation-contraction coupling (ECC) and relaxation processes. The primary function of Ca(2+) in the heart is the control of mechanical activity developed by the myofibril contractile apparatus. This key role of Ca(2+) signaling explains the subtle and critical control of important events of ECC and relaxation, such Ca(2+) influx and SR Ca(2+) release and uptake. The multifunctional Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a signaling molecule that regulates a diverse array of proteins involved not only in ECC and relaxation, but also in cell death, transcriptional activation of hypertrophy, inflammation and arrhythmias. CaMKII activity is triggered by an increase in intracellular Ca(2+) levels. This activity can be sustained, creating molecular memory after the decline in Ca(2+) concentration, by autophosphorylation of the enzyme, as well as by oxidation, glycosylation and nitrosylation at different sites of the regulatory domain of the kinase. CaMKII activity is enhanced in several cardiac diseases, altering the signaling pathways by which CaMKII regulates the different fundamental proteins involved in functional and transcriptional cardiac processes. Dysregulation of these pathways constitutes a central mechanism of various cardiac disease phenomena, like apoptosis and necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant aspects of the molecular physiology of CaMKII and provide a conceptual framework for understanding the role of the CaMKII cascade on Ca(2+) regulation and dysregulation in cardiac health and disease.
Resumo:
To evaluate the influence of light-activation of second, third and fourth increments on degree of conversion (DC) and microhardness (KHN) of the top (T) and bottom (B) surface of the first increment. Forty samples (n = 5) were prepared. In groups 1-4, after each increment light-activation (multiple irradiation), T and B of the first increment were measured in DC and KHN. In groups 5-8, only the first increment was made (single irradiation) and measurements of DC and KHN were taken at 15 min intervals. The light-activation modes were (XL) 500 mW/cm(2) × 38 s (G1/G5); (S) 1000 mW/cm(2) × 19 s (G2/G6), (HP) 1400 mW/cm(2) × 14 s (G3/G7); (PE) 3200 mW/cm(2) × 6 s (G4/G8). Data for DC and KHN were analyzed separately by using PROC MIXED for repeated measures and Tukey-Kramer test (α = 0.05). For KHN, B showed lower values than T. PE resulted in lower values of KHN in B surface. For single and multiple irradiations, T and B of first measurement showed the lowest KHN and the fourth measurement showed the highest, with significant difference between them. For single irradiation, first and second increments presented similar KHN, different from the third and fourth increment, which did not differ between them. For multiple irradiations, the second light-activation resulted in KHN similar to first, third and fourth increments. For DC, except QTH, T presented higher DC than B. The light-activation of successive increments was not able to influence the KHN and DC of the first increment.