977 resultados para Luminance-modulated
Resumo:
Background: Mutism and dense retrograde amnesia are found both in organic and dissociative contexts. Moreover, dissociative symptoms may be modulated by right prefrontal activity. A single case, M.R., developed left hemiparesis, mutism and retrograde amnesia after a high-voltage electric shock without evidence of lasting brain lesions. M.R. suddenly recovered from his mutism following a mild brain trauma 2 years later. Methods: M.R.'s neuropsychological pattern and anatomoclinical correlations were studied through (i) language and memory assessment to characterize his deficits, (ii) functional neuroimaging during a standard language paradigm, and (iii) assessment of frontal and left insular connectivity through diffusion tractography imaging and transcranial magnetic stimulation. A control evaluation was repeated after recovery. Findings: M.R. recovered from the left hemiparesis within 90 days of the accident, which indicated a transient right brain impairment. One year later, neurobehavioral, language and memory evaluations strongly suggested a dissociative component in the mutism and retrograde amnesia. Investigations (including MRI, fMRI, diffusion tensor imaging, EEG and r-TMS) were normal. Twenty-seven months after the electrical injury, M.R. had a very mild head injury which was followed by a rapid recovery of speech. However, the retrograde amnesia persisted. Discussion: This case indicates an interaction of both organic and dissociative mechanisms in order to explain the patient's symptoms. The study also illustrates dissociation in the time course of the two different dissociative symptoms in the same patient.
Resumo:
Treating human melanoma lines with dibutyryl adenosine 3':5'-cyclic monophosphate (dbc AMP) resulted in morphologic changes associated with the altered expression of cell surface antigens. After treatment, cells developed long cellular projections characteristic of mature melanocytes and showed the presence of an increased number of Stage II premelanosomes. In addition, induction of melanin synthesis, detected as brown perinuclear pigmentation, was observed. The AMP further drastically reduced the growth rate of the five melanoma cell lines that were tested. The influence of dbc AMP was completely reversible 3 days after the agent was removed from the culture medium. The antigenic phenotype of the melanoma lines was compared before and after dbc AMP treatment. This was done with four monoclonal antibodies directed against major histocompatibility complex (MHC) Class I and II antigens and 11 monoclonal antibodies defining eight different melanoma-associated antigenic systems. Treatment with dbc AMP reduced the expression of human leukocyte antigen (HLA)-ABC antigens and beta-2-microglobulin in five of five melanoma lines. In the two HLA-DR-positive cell lines dbc AMP reduced the expression of this antigen in one line and enhanced it in the other. No induction of HLA-DR or HLA-DC antigens was observed in the Class II negative cell lines. Furthermore, dbc-AMP modulated the expression of the majority of the melanoma antigenic systems tested. The expression of a 90-kilodalton (KD) antigen, which has been found to be upregulated by interferon-gamma, was markedly decreased in all the five cell lines. A similar decrease in the expression of the high molecular weight proteoglycan-associated antigen (220-240 KD) was observed. The reduced expression of Class I and II MHC antigens as well as the altered expression of the melanoma-associated antigens studied were shown to be reversible after dbc AMP was removed. Our results collectively show that the monoclonal antibody-defined melanoma-associated molecules are linked to differentiation. They could provide useful tools for monitoring the maturation of melanomas in vivo induced by chemical agents or natural components favoring differentiation.
Resumo:
RESUME La peau est un organe complex composé de deux parties distinctes: l'épiderme et le derme, séparé par une membrane basale. Dans la couche basale de l'épiderme, les melanocytes synthétisent la mélanine dans des mélanosomes. Les mélanosomes sont ensuite transportés des mélanocytes vers les kératinocytes, protégeant ainsi la peau des dégâts dus aux radiations U.V. La E-cadhérine assure l'adhésion entre les mélanocytes et les kératinocytes. Au cours de la transformation du mélanocyte en cellule malignes, les mélanocytes perdent l'expression de la E-cadhérine et, simultanément, se mettent à exprimer la N-cadhérine, ce phénomène est nommé « cadherin switch ». La perte de l'expression de la E-cadhérine permet au mélanocytes d'échapper au contrôle des kératinocytes, tandis que l'expression de la N-cadhérine promeut l'invasion métastasique des cellules de mélanome. Préalablement, nous avons trouvé qu'une fraction de la N-cadhérine était localisée les microdomaines membranaires spécialisés, enrichi en cholestérol et en glycosphingolipides, appelés « lipid rafts ». Une des particularité des « lipid rafts » est qu'ils sont riches en molécules permettant la transmission de signaux d'activation. De plus, des travaux récents rapportent qu'un sous-type de « lipid rafts » appelé caveolae pourrai contribuer à la progression tumorale. S'appuyant sur le rôle prépondérant de la N-cadhérine dans la progression du mélanome ainsi que sur sa présence dans les « lipid rafts », nous avons émis l'hypothèse que l'association de la N-cadhérine avec les « lipid rafts » pourrai contribuer à la progression du mélanome. Le but de ce projet à été de caractériser l'association de la Ncadhérine avec les « lipid rafts » au cours de la progression du mélanome. Au moyen de lignées cellulaires humaines, dérivées de mélanomes à différents stades de progression, nous avons trouvé que (1) la N-cadhérine est partiellement associée aux «lipid rafts » dans six lignées dérivées de mélanome en phase avancée de progression et dans des tumeurs expérimentales, mais pas dans deux lignées dérivées de mélanome à un stade plus précoce ; (2) l'association de la N-cadhérine dans les « lipid rafts » ne dépent pas de son niveau d'expression ; (3) la E-cadhérine n'est pas présente dans les « lipid rafts »d'une lignée de cellule de mélanome ayant conservé l'expression de la E-cadhérine ; (4) la localisation de la N-cadhérine dans les « lipid rafts »n'est pas modulée par les facteurs de croissance bFGF, IGF-I, et HRG1-β1, ni par des voies de signalisation impliquant MEK, PKA, les kinases de la famille Src, et PI3K ; (5) l'association de la N-cadhérine avec les « lipid rafts » n'est pas requise pour la stabilisation des jonctions adhérentes et n'est pas perturbée par la destruction de ces dernières ; (6) la N-cadhérine dans les « lipid rafts » forme un complexe avec β-caténine, p 120ctn et α-caténine. En conclusion, cette étude originale montre pour la première fois que dans des cellules de mélanome agressifs, une fraction de la N-cadhérine est localisée dans les « lipid rafts » en association avec β-caténine, p 120ctn et α-caténine. Comme la présence de la N-cadhérine dans les « lipid rafts » ne contribue pas à la formation de jonction adhérentes, cette étude suggère une nouvelle fonction pour la N-cadhérine dans les « lipid rafts ». SUMMARY Human skin is a complex organ composed of two layers separated by a basement membrane: the epidermis and the dermis. In the basal layer of the epidermis, the melanin-producing cells of the skin, the melanocytes deliver melanin-containing melanosomes to keratinocytes, thereby protecting the epidermis and the dermis from the deleterious effects of ultraviolet light. Melanocytes physically interact with keratinocytes through E-cadherin-mediated adhesion. During malignant transformation into melanoma cells, melanocytes lose E-cadherin expression and concomitantly gain expression of N-cadherin, a phenomenon referred to as "cadherin switch". Loss of E-cadherin allows melanocytes to escape the regulatory effects of neighbouring keratinocytes, while gain of N-cadherin expression promotes migration, invasion and metastatic abilities of melanoma cells. In preliminary experiments, we found that a fraction of N-cadherin localized to specialized membrane microdomains enriched in cholesterol- and glycosphingolipid, called lipid rafts. One particular feature of lipid rafts is that they are rich in signalling molecules and they possibly modulate transmembrane signalling events. Moreover, recent reports suggested that a specialized type of rafts called caveolae might contribute to tumor progression. Based on the documented role of N-cadherin in melanoma progression and its presence in lipid rafts of melanoma cells, we raised the hypothesis that the association of N-cadherin with lipid rafts might be relevant to melanoma progression. The aim of this project was to characterize N-cadherin associated to lipid rafts during melanoma progression. Using human melanoma cell lines derived from melanoma at different stages of progression, we found that (1) N-cadherin is partly associated to lipid rafts in six cell lines derived from melanomas at late stages of progression and in experimental tumors, but not in two melanoma cell lines derived from early stages; (2) N-cadherin targeting to lipid rafts does not depend on its expression level; (3) E-cadherin is not localized in lipid rafts of a melanoma cell line that retained E-cadherin expression; (4) N-cadherin localization to lipid rafts is not modulated by the growth factors bFGF, IGF-I, and HRG1-β1, nor by MEK-, PKA-, Src family kinases-, and PI3K-mediated signalling events; (5) the association of N-cadherin with lipid rafts is not required for adherens junctions stability nor it is perturbed by adherens junctions disruption; (6) N-cadherin in lipid rafts is in complex with β-catenin, p 120ctm and α-catenin. In conclusion, this study provides original evidence that in aggressive melanoma cells a pool of N-cadherin is localized in lipid rafts in association with β-catenin, p 120 and α-catenin. The presence of N-cadherin in lipid rafts independently of its involvement in adherens junctions formation, suggests a possible new role for N-cadherin recruited to lipid rafts. Further studies investigating the biological meaning of this localization promise to uncover new properties of this molecule.
Resumo:
During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.
Resumo:
ABSTRACT (FRENCH)Ce travail de thèse basé sur le système visuel chez les sujets sains et chez les patients schizophrènes, s'articule autour de trois articles scientifiques publiés ou en cours de publication. Ces articles traitent des sujets suivants : le premier article présente une nouvelle méthode de traitement des composantes physiques des stimuli (luminance et fréquence spatiale). Le second article montre, à l'aide d'analyses de données EEG, un déficit de la voie magnocellulaire dans le traitement visuel des illusions chez les patients schizophrènes. Ceci est démontré par l'absence de modulation de la composante PI chez les patients schizophrènes contrairement aux sujets sains. Cette absence est induite par des stimuli de type illusion Kanizsa de différentes excentricités. Finalement, le troisième article, également à l'aide de méthodes de neuroimagerie électrique (EEG), montre que le traitement des contours illusoires se trouve dans le complexe latéro-occipital (LOC), à l'aide d'illusion « misaligned gratings ». De plus il révèle que les activités démontrées précédemment dans les aires visuelles primaires sont dues à des inférences « top- down ».Afin de permettre la compréhension de ces trois articles, l'introduction de ce manuscrit présente les concepts essentiels. De plus des méthodes d'analyses de temps-fréquence sont présentées. L'introduction est divisée en quatre parties : la première présente le système visuel depuis les cellules retino-corticales aux deux voix du traitement de l'information en passant par les régions composant le système visuel. La deuxième partie présente la schizophrénie par son diagnostic, ces déficits de bas niveau de traitement des stimuli visuel et ces déficits cognitifs. La troisième partie présente le traitement des contours illusoires et les trois modèles utilisés dans le dernier article. Finalement, les méthodes de traitement des données EEG seront explicitées, y compris les méthodes de temps-fréquences.Les résultats des trois articles sont présentés dans le chapitre éponyme (du même nom). De plus ce chapitre comprendra les résultats obtenus à l'aide des méthodes de temps-fréquenceFinalement, la discussion sera orientée selon trois axes : les méthodes de temps-fréquence ainsi qu'une proposition de traitement de ces données par une méthode statistique indépendante de la référence. La discussion du premier article en montrera la qualité du traitement de ces stimuli. La discussion des deux articles neurophysiologiques, proposera de nouvelles d'expériences afin d'affiner les résultats actuels sur les déficits des schizophrènes. Ceci pourrait permettre d'établir un marqueur biologique fiable de la schizophrénie.ABSTRACT (ENGLISH)This thesis focuses on the visual system in healthy subjects and schizophrenic patients. To address this research, advanced methods of analysis of electroencephalographic (EEG) data were used and developed. This manuscript is comprised of three scientific articles. The first article showed a novel method to control the physical features of visual stimuli (luminance and spatial frequencies). The second article showed, using electrical neuroimaging of EEG, a deficit in spatial processing associated with the dorsal pathway in chronic schizophrenic patients. This deficit was elicited by an absent modulation of the PI component in terms of response strength and topography as well as source estimations. This deficit was orthogonal to the preserved ability to process Kanizsa-type illusory contours. Finally, the third article resolved ongoing debates concerning the neural mechanism mediating illusory contour sensitivity by using electrical neuroimaging to show that the first differentiation of illusory contour presence vs. absence is localized within the lateral occipital complex. This effect was subsequent to modulations due to the orientation of misaligned grating stimuli. Collectively, these results support a model where effects in V1/V2 are mediated by "top-down" modulation from the LOC.To understand these three articles, the Introduction of this thesis presents the major concepts used in these articles. Additionally, a section is devoted to time-frequency analysis methods not presented in the articles themselves. The introduction is divided in four parts. The first part presents three aspects of the visual system: cellular, regional, and its functional interactions. The second part presents an overview of schizophrenia and its sensoiy-cognitive deficits. The third part presents an overview of illusory contour processing and the three models examined in the third article. Finally, advanced analysis methods for EEG are presented, including time- frequency methodology.The Introduction is followed by a synopsis of the main results in the articles as well as those obtained from the time-frequency analyses.Finally, the Discussion chapter is divided along three axes. The first axis discusses the time frequency analysis and proposes a novel statistical approach that is independent of the reference. The second axis contextualizes the first article and discusses the quality of the stimulus control and direction for further improvements. Finally, both neurophysiologic articles are contextualized by proposing future experiments and hypotheses that may serve to improve our understanding of schizophrenia on the one hand and visual functions more generally.
Resumo:
Background To replicate, retroviruses must insert DNA copies of their RNA genomes into the host genome. This integration process is catalyzed by the viral integrase protein. The site of viral integration has been shown to be non-random and retrovirus-specific. LEDGF/p75, a splice variant encoded by PSIP1 gene and described as a general transcription coactivator, was identified as a tethering factor binding both to chromatin and to lentiviral integrases, thereby affecting integration efficiency as well as integration site selection. LEDGF/p75 is still a poorly characterized protein, and its cellular endogenous function has yet to be fully determined. In order to start unveiling the roles of LEDGF/p75 in the cell, we started to investigate the mechanisms involved in the regulation of LEDGF/p75. Materials and methods To identify PSIP1 minimal promoter and associated regulatory elements, we cloned a region starting 5 kb upstream the transcription start site (TSS, +1 reference position) to the ATG start codon (+816), as well as systematic truncations, in a plasmid containing the firefly luciferase reporter gene. These constructs were co-transfected into HEK293 cells with a plasmid encoding the Renilla luciferase under the pTK promoter as an internal control for transfection efficiency. Both luciferase activities were assessed by luminescence as an indicator of promoter activity. Results Luciferase assays identified regions -76 to +1 and +1 to +94 as two independent minimal promoters showing respectively a 3.7x and 2.3x increase in luciferase activity. These two independent minimal promoters worked synergistically increasing luciferase activity up to 16.3x as compared to background. Moreover, we identified five regulatory blocks which modulated luciferase activity depending on the DNA region tested, three enhancers (- 2007 to -1159, -284 to -171 and +94 to +644) and two silencers (-171 to -76 and +796 to +816). However, the silencing effect of the region -171 to -76 is dependent on the presence of the +94 to +644 region, ruling out the enhancer activity of the latter. Computational analysis of PSIP1 promoter revealed the absence of TATA box and initiator (INR) sequences, classifying this promoter as nonconventional. TATA-less and INR-less promoters are characterized by multiple Sp1 binding sites, involved in the recruitment of the RNA pol II complex. Consistent with this, PSIP1 promoter contains multiple putative Sp1 binding sequences in regions -76 to +1 and +1 to +94.
Resumo:
VEGF is considered as an important factor in the pathogenesis of macular edema. VEGF induces the rupture of the blood retinal barrier and may also influence the retinal pigment epithelial (RPE) outer retinal barrier. The aim of this work was to analyze the influence of the VEGF receptor pathways in the modulation of the RPE barrier breakdown in vitro and in vivo. The ARPE19 human junctions in culture are modulated by VEGF through VEGFR-1 but not through VEGFR-2. PlGF-1, that is a pure agonist of VEGFR-1, is produced in ARPE-19 cells under hypoxic conditions and mimics VEGF effects on the external retinal barrier as measured by TER and inulin flux. In vivo, the intravitreous injection of PlGF-1 induces a rupture of the external retinal barrier together with a retinal edema. This effect is reversible within 4 days. VEGF-E, that is a pure agonist of VEGFR-2, does not induce any acute effect on the RPE barrier. These results demonstrate that PlGF-1 can reproduce alterations of the RPE barrier occurring during diabetic retinopathy.
Resumo:
PURPOSE: Apoptosis is known to play a key role in cell death after retinal ischemia. However, little is known about the kinetics of the signaling pathways involved and their contribution to this process. The aim of this study was to determine whether changes in the expression of molecules in the mitochondrial apoptotic pathway might explain the progression of retinal damage following ischemia/reperfusion. METHODS: Retinal ischemia was induced by elevating intraocular pressure in the vitreous cavity to 150 mmHg for a period of 60 min. At time 0, 3 h (early phase), and 24 h (late phase) after reperfusion, the retinas were harvested and modifications in the expression of Bax, Bak, Bcl-2, and Bcl-x(L) as well as caspase-3 and -7, were examined by qPCR and, in some cases, by western blot. RESULTS: qPCR analysis performed at the early phase after ischemia revealed a time dependent decrease in Bax, Bak, and Bcl-x(L) and no alteration in Bcl-2 mRNA expression in response to retinal ischemia. At the protein level, proapoptotic Bax and Bak were not modulated while Bcl-2 and Bcl-x(L) were significantly upregulated. At this stage, the Bax per Bcl-2 and Bax:Bcl-x(L) ratios were not modified. At the late phase of recovery, Bax and Bcl-x(L) mRNAs were downregulated while Bak was increased. Increased Bax:Bcl-2 and Bax:Bcl-x(L) ratios at both the mRNA and protein levels were observed 24 h after the ischemic insult. Analysis of caspases associated with mitochondria-mediated apoptosis revealed a specific increase in the expression of caspase-3 in the ischemic retinas 24 h after reperfusion, and a decrease in the expression of caspase-7. CONCLUSIONS: This study revealed that Bcl-2-related family members were differently regulated in the early and late phases after an ischemic insult. We showed that the Bax:Bcl-2 and Bax:Bcl-x(L) balances were not affected in the initial phases, but the Bax:Bcl-x(L) ratio shifted toward apoptosis during the late phase of recovery. This shift was reinforced by caspase-3 upregulation.
Resumo:
Glucagon-like peptide-1 (GLP-1) stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor linked to activation of the adenylyl cyclase pathway. Here, using insulinoma cell lines, we studied homologous and heterologous desensitization of GLP-1-induced cAMP production. Preexposure of the cells to GLP-1 induced a decrease in GLP-1-mediated cAMP production, as assessed by a 3- to 5-fold rightward shift of the dose-response curve and an approximately 20 percent decrease in the maximal production of cAMP. Activation of protein kinase C by the phorbol ester phorbol 12-myristate 13-acetate (PMA) also induced desensitization of the GLP-1-mediated response, leading to a 6- to 9-fold shift in the EC50 and a 30% decrease in the maximal production of cAMP. Both forms of desensitization were additive, and the protein kinase C inhibitor RO-318220 inhibited PMA-induced desensitization, but not agonist-induced desensitization. GLP-1- and PMA-dependent desensitization correlated with receptor phosphorylation, and the levels of phosphorylation induced by the two agents were additive. Furthermore, PMA-induced, but not GLP-1-induced, phosphorylation was totally inhibited by RO-318220. Internalization of the GLP-1 receptor did not participate in the desensitization induced by PMA, as a mutant GLP-1 receptor lacking the last 20 amino acids of the cytoplasmic tail was found to be totally resistant to the internalization process, but was still desensitized after PMA preexposure. PMA and GLP-1 were not able to induce the phosphorylation of a receptor deletion mutant lacking the last 33 amino acids of the cytoplasmic tail, indicating that the phosphorylation sites were located within the deleted region. The cAMP production mediated by this deletion mutant was not desensitized by PMA and was only poorly desensitized by GLP-1. Together, our results indicate that the production of cAMP and, hence, the stimulation of insulin secretion induced by GLP-1 can be negatively modulated by homologous and heterologous desensitization, mechanisms that involve receptor phosphorylation.
Resumo:
The peroxisome proliferator-activated receptor alpha is a ligand-activated transcription factor that plays an important role in the regulation of lipid homeostasis. PPARalpha mediates the effects of fibrates, which are potent hypolipidemic drugs, on gene expression. To better understand the biological effects of fibrates and PPARalpha, we searched for genes regulated by PPARalpha using oligonucleotide microarray and subtractive hybridization. By comparing liver RNA from wild-type and PPARalpha null mice, it was found that PPARalpha decreases the mRNA expression of enzymes involved in the metabolism of amino acids. Further analysis by Northern blot revealed that PPARalpha influences the expression of several genes involved in trans- and deamination of amino acids, and urea synthesis. Direct activation of PPARalpha using the synthetic PPARalpha ligand WY14643 decreased mRNA levels of these genes, suggesting that PPARalpha is directly implicated in the regulation of their expression. Consistent with these data, plasma urea concentrations are modulated by PPARalpha in vivo. It is concluded that in addition to oxidation of fatty acids, PPARalpha also regulates metabolism of amino acids in liver, indicating that PPARalpha is a key controller of intermediary metabolism during fasting.
Resumo:
A patient is described who presented with myoclonus of the first dorsal interosseus muscle of the right foot. This myoclonus occurred 18 months after trauma of the cutaneous branch of the deep peroneal nerve on the dorsal aspect of the foot. Tactile stimulation in the dermatome of this nerve, or an anaesthetic block of the deep peroneal nerve stopped the myoclonus. The different innervation between the efferent motor activity responsible for the movements and the sensory afference suppressing it points firmly towards involvement of central connections. However, abolition of the movement by anaesthesia suggests the presence of a peripheral ectopic generator. This finding confirms that focal myoclonus can have its origin in the peripheral nervous system and may be modulated by sensory inputs.
Resumo:
BACKGROUND: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. OBJECTIVES: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. RESULTS: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. CONCLUSIONS: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner.
Resumo:
Molecular mechanisms by which exercise exerts cardiovascular benefits are poorly understood. Exercise-induced increase of endothelial NO synthase (eNOS) phosphorylation through the protein kinase Akt has been shown to be a key mechanism underlying the beneficial effect of exercise in coronary artery disease patients. We examined whether this protective pathway might also be activated in long-term-exercised healthy mice. C57BL/6 wild-type mice swam for 24 weeks. A group of sedentary animals were used as controls. Aortic levels of total protein kinase Akt (protein kinase B), phosphorylated Akt at ser473 (p-Akt), total eNOS, phosphorylated eNOS at Ser1177 (p-eNOS), and PECAM-1 (platelet endothelial cell adhesion molecule-1) were assessed by Western blotting. Protein expressions of Akt, p-Akt, eNOS, p-eNOS, and PECAM-1 were not modulated by 24 weeks of exercise. The Akt-dependent eNOS phosphorylation did not seem to be a primary molecular adaptation in response to long-term exercise in healthy mice.
Resumo:
Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.