930 resultados para Long-Range Relationship
Resumo:
Aims/hypothesis. Maternal fuel metabolism is known to exert long range effects on the later development of children of diabetic mothers. Recently cardiovascular disease in adult life has been linked retrospectively with foetal malnutrition. The aim of this study was to identify whether markers for fuel-related cardiovascular programming exist for the offspring of diabetic pregnancy.
Resumo:
This paper studies single-channel speech separation, assuming unknown, arbitrary temporal dynamics for the speech signals to be separated. A data-driven approach is described, which matches each mixed speech segment against a composite training segment to separate the underlying clean speech segments. To advance the separation accuracy, the new approach seeks and separates the longest mixed speech segments with matching composite training segments. Lengthening the mixed speech segments to match reduces the uncertainty of the constituent training segments, and hence the error of separation. For convenience, we call the new approach Composition of Longest Segments, or CLOSE. The CLOSE method includes a data-driven approach to model long-range temporal dynamics of speech signals, and a statistical approach to identify the longest mixed speech segments with matching composite training segments. Experiments are conducted on the Wall Street Journal database, for separating mixtures of two simultaneous large-vocabulary speech utterances spoken by two different speakers. The results are evaluated using various objective and subjective measures, including the challenge of large-vocabulary continuous speech recognition. It is shown that the new separation approach leads to significant improvement in all these measures.
Resumo:
Cross-border integration is the central management issue for banks that expand internationally, and this is especially true in Central and Eastern Europe, where the pace of internationalisation through mergers and acquisitions has been rapid. A critical challenge in cross-border integration is aligning a multinational company's formal organizational structure with the distribution of capabilities across its subsidiary units, and this issue is explored by tracking the co-evolution of organizational structure and capabilities during the internationalisation of a large banking network into this region. Our focus is the Vienna head office of Bank Austria Creditanstalt, which was acquired first by HypoVereinsbank (Germany) and then UniCredit (Italy). Despite its formal role being downgraded during these changes, the unit continued to develop its distinctive capabilities. The key insight our article offers is that managing cross-border integration is not simply about recognizing the value of the distinctive capabilities of individual units and designing formal structures that successfully align with them. It is also about understanding the need for dynamic interaction between formal corporate structure and individual units' desires to retain power and influence, which have significant implications for the development of their organizational capabilities.
Resumo:
Long-range strain fields associated with dislocation cores at an oxide interface are shown to be sufficient enough to create significant variations in the chemical composition around the core (Cottrell atmospheres). Such stress-assisted diffusion of cations towards the cores is proposed to significantly impact the properties of nanoscale functional devices. The figure shows a Z-contrast image of a single dislocation core at an oxide interface.
Resumo:
In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential-energy curves and molecular parameters for several low-lying states of the Rb, Yb+ system. We employ both a multireference configuration interaction and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima, and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients, are estimated from our ab initio data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom (ad=128.4 atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb, Rb+) channels that were carried out in our work. However, we find that the pseudopotential approximation is rather limited in validity and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.
Resumo:
In this paper we examine the consequences for social mobility of the recent unprecedented period of economic growth experienced in Ireland and the implications of such developments for current theories of social fluidity. Contrary to suggestions that the "Celtic Tiger" experience has been associated with deepening problem marginalization, we found evidence for a substantial upgrading of the class structure, increased levels of social mobility and increased social fluidity in relation to long-range hierarchical mobility. Such increased openness could not be explained by changes in the mediating role of education. The pattern of change suggests that both the upgrading of the class structure and the recent unprecedented tightness of the labour market have led employers to increasingly apply criteria other than education in a manner that has facilitated increased social fluidity. The Irish case provides further support for the argument for reconsidering the balance that mobility research has struck between social fluidity and absolute mobility and encouraging increased attention to the evolution of firms and jobs. It also suggests that, in circumstances where policies in advanced industrial societies have shown an increasing tendency to diverge, increased social fluidity may come about as a consequence of very different economic and social policies. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Field-induced polarization (FIP) functions were proposed over two decades ago to improve the accuracy of calculated response properties, and the FIP functions in GTO form for H and C to F were tested on small molecules, with encouraging results. The concept of FIP,is now extended to all atoms up to Kr. New simplifying approximations for the description of asymptotic highest occupied atomic orbitals. (HOAOs) are introduced in this study. They provide the basis for STO and GTO exponents of a complete set of FIP functions from H to Kr, which are both listed for the convenience of the users. Tests on the polarizabilities of a series of atoms and molecules demonstrate that addition of the FIP basis functions to a series' of standard basis sets drastically improves the performance of all these basis sets compared to converged results. Moreover, the byproduct of this study (approximate asymptotic HOAOs) provides information for the construction of accurate basis sets for long-range ground state properties. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The flexibility of the metal-organic framework Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O (Cu-SIP-3) toward reversible single-crystal to single-crystal transformations is demonstrated using in situ diffraction methods at variable temperature. At temperatures below a dehydration-induced phase transition (T < 370 K) the structure is confirmed as being hydrated. In the temperature range where the transition takes place (370 K < T < 405 K) no discrete, sharp Bragg peaks can be seen in the single-crystal X-ray diffraction pattern, indicating significant loss of long-range order. At temperatures higher than 405 K, the Bragg peaks return and the structure can be refined as dehydrated Cu-SIP-3. The loss of guest water molecules can be followed at temperatures below the phase transition giving insight into the mechanism of the dehydration. Addition of nitric oxide gas to the material above the gating opening pressure of 275 mbar also leads to loss of Bragg scattering in the diffraction pattern.
Resumo:
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.
Resumo:
Macromolecules are a minority but important component of the minerals formed by living organisms, or biominerals. The role these macromolecules play at the early stages of biomineral formation, as well as their long-term and long-range effects on the mature biomineral, is poorly understood. A 42-amino acid peptide, asp2, was derived from the Asprich family of proteins. In this study we present X-ray absorption near-edge structure spectroscopy and X-ray photoelectron emission microscopy data from the asp2 peptide, the calcite (CaCO3) crystals, and the peptide + crystal composites. The results clearly show that asp2 is occluded in fully formed biomineral crystals and slightly but permanently disorders the crystal structure at short- and long-range distances.
Resumo:
Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (,19 keV/mm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual c-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ,1.48 in the SOBP and ,1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.
Resumo:
This article describes a practical demonstration of a complete full-duplex “amplitude shift keying (ASK)” retrodirective radio frequency identification (RFID) transceiver array.The interrogator incorporates a “retrodirective array (RDA)” with a dual-conversion phase conjugating architecture in order to achieve better performance than is possible with conventional RFID solutions. Here mixers phase conjugate the incoming signal and a carrier recovery circuit recovers incoming angle of arrival phase information of an encoded amplitude shift keyed signal. The resulting interrogator provides a receiver sensitivity level of -109 dBm. A four element square patch RDA gives a 3 dB automatic beam steering angle of acceptance of ±45°. When compared to an RFID system operating by conventional (non-retrodirective) means retrodirective action leads to improved range extension of up to 16 times at ±45°. Operator pointing accuracy requirements are also reduced due to automatic retrodirective self-pointing. These features significantly enhance deployment opportunities requiring long range low equivalent isotropic radiation power (EIRP) and/or RFID tagging of moving platforms. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:160–164, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27258
Resumo:
Experimental standing wave oscillations of the interfacial potential across an electrode have been observed in the electrocatalytic oxidation of formic acid on a Pt ring working electrode. The instantaneous potential distribution was monitored by means of equispaced potential microprobes along the electrode. The oscillatory standing waves spontaneously arose from a homogeneous stationary state prior to a Hopf bifurcation if the reference electrode was placed close to the working electrode. Reduced electrolyte concentrations resulted in aperiodic potential patterns, while the presence of a sufficiently large ohmic resistance completely suppressed spatial inhomogeneities. The experimental findings confirm numerical predictions of a reaction-migration formalism: under the chosen geometry, a long-range negative potential coupling between distant points across the ring electrode can lead to oscillatory potential domains of distinct phase. It is further shown that the occurrence of oscillatory standing waves can be rationalized as the electrochemical equivalent of Turing's second bifurcation (wave bifurcation). In the presence of an external resistance, the coupling becomes positive throughout and leads to spatial synchronization.
Resumo:
We use molecular dynamics simulation to study the mechanisms of plasticity during cutting of monocrystalline and polycrystalline silicon. Three scenarios are considered: (i) cutting a single crystal silicon workpiece with a single crystal diamond tool, (ii) cutting a polysilicon workpiece with a single crystal diamond tool, and (iii) cutting a single crystal silicon workpiece with a polycrystalline diamond tool. A long-range analytical bond order potential is used in the simulations, providing a more accurate picture of the atomic-scale mechanisms of brittle fracture, ductile plasticity, and structural changes in silicon. The MD simulation results show a unique phenomenon of brittle cracking typically inclined at an angle of 45° to 55° to the cut surface, leading to the formation of periodic arrays of nanogrooves in monocrystalline silicon, which is a new insight into previously published results. Furthermore, during cutting, silicon is found to undergo solid-state directional amorphisation without prior Si-I to Si-II (beta tin) transformation, which is in direct contrast to many previously published MD studies on this topic. Our simulations also predict that the propensity for amorphisation is significantly higher in single crystal silicon than in polysilicon, signifying that grain boundaries eases the material removal process.