832 resultados para Long chain alcohols
Resumo:
Peroxide-mediated reactive extrusion of linear isotactic polypropylene (L-PP) was conducted in the presence of trimethylolpropane trimethacrylate (TMPTMA) and triallyl trimesate (TAM) coagents, using a twin screw extruder. The resulting coagent-modified polypropylenes (CM-PP) had higher viscosities and elasticities, as well as increased crystallization temperature compared to PP reacted only with peroxide (DCP-PP). Additionally, deviations from terminal flow, and strain hardening were observed in PP modified with TAM, signifying the presence of long chain branching (LCB). The CM-PP formulations retained the modulus and tensile strength of the parent L-PP, in spite of their lower molar mass and viscosities, whereas their elongation at break and the impact strength were better. This was attributed to the finer spherulitic structure of these materials, and to the disappearance of the skin-core layer in the injection molded specimens.
Resumo:
Increased temperature and precipitation in Arctic regions have led to deeper thawing and structural instability in permafrost soil. The resulting localized disturbances, referred to as active layer detachments (ALDs), may transport organic matter (OM) to more biogeochemically active zones. To examine this further, solid state cross polarization magic angle spinning 13C nuclear magnetic resonance (CPMAS NMR) and biomarker analysis were used to evaluate potential shifts in riverine sediment OM composition due to nearby ALDs within the Cape Bounty Arctic Watershed Observatory, Nunavut, Canada. In sedimentary OM near ALDs, NMR analysis revealed signals indicative of unaltered plant-derived material, likely derived from permafrost. Long chain acyclic aliphatic lipids, steroids, cutin, suberin and lignin occurred in the sediments, consistent with a dominance of plant-derived compounds, some of which may have originated from permafrost-derived OM released by ALDs. OM degradation proxies for sediments near ALDs revealed less alteration in acyclic aliphatic lipids, while constituents such as steroids, cutin, suberin and lignin were found at a relatively advanced stage of degradation. Phospholipid fatty acid analysis indicated that microbial activity was higher near ALDs than downstream but microbial substrate limitation was prevalent within disturbed regions. Our study suggests that, as these systems recover from disturbance, ALDs likely provide permafrost-derived OM to sedimentary environments. This source of OM, which is enriched in labile OM, may alter biogeochemical patterns and enhance microbial respiration within these ecosystems.
Resumo:
Introduction: Obestatin is a controversial gastrointestinal peptide purported to have metabolic actions.
Objectives: This study investigated whether treatment with a stable obestatin analogue (PEG-OB(Cys10, Cys13)) changed plasma metabolite levels firstly in lean and subsequently in diet-induced obesity (DIO) C57BL6/J mice.
Methods: Untargeted LC-HRMS metabolomics experiments were carried out in ESI + mode with plasma extracts from both groups of animals. Data were normalised, multivariate and univariate statistical analysis performed and metabolites of interest putatively identified.
Results: In lean mice, 39 metabolites were significantly changed by obestatin treatment and the majority of these were increased, including various C16 and C18 moieties of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and monoacylglycerol, along with vitamin A, vitamin D3, tyrosine, acetylcarnitine and 2α-(hydroxymethyl)-5α-androstane-3β,17β-diol. Decreased concentrations of glycolithocholic acid, 3-dehydroteasterone and various phospholipids were observed. In DIO mice, 25 metabolites were significantly affected and strikingly, the magnitudes of changes here were generally much greater in DIO mice than in lean mice, and in contrast, the majority of metabolite changes were decreases. Four metabolites affected in both groups included glycolithocholic acid, and three different long-chain (C18) phospholipid molecules (phosphatidylethanolamine, platelet activating factor (PAF), and monoacylglycerol). Metabolites exclusively affected in DIO mice included various phosphatidylcholines, lysophosphatidylcholines and fatty acyls, as well as creatine and oxidised glutathione.
Conclusion: This investigation demonstrates that obestatin treatment affects phospholipid turnover and influences lipid homeostasis, whilst providing convincing evidence that obestatin may be acting to ameliorate diet-induced impairments in lipid metabolism, and it may influence steroid, bile acid, PAF and glutathione metabolism.
Resumo:
The free fatty acid receptor 1 (FFA1), a G protein-coupled receptor (GPCR) naturally activated by long-chain fatty acids is a novel target for the treatment of metabolic diseases. The basic amine spirocyclic periphery of Eli Lilly's drug candidate LY2881835 for treatment of type 2 diabetes mellitus (which reached phase I clinical trials) inspired a series of novel FFA1 agonists. These were designed to incorporate the 3-[4-(benzyloxy)phenyl]propanoic acid pharmacophore core decorated with a range of spirocyclic motifs. The latter were prepared via the Prins cyclization and subsequent modification of the 4-hydroxytetrahydropyran moiety in the Prins product. Here, we synthesize 19 compounds and test for FFA1 activity. Within this pilot set, a nanomolar potency (EC50=55nM) was reached. Four lead compounds (EC50 range 55-410nM) were characterized for aqueous solubility, metabolic stability, plasma protein binding and Caco-2 permeability. While some instability in the presence of mouse liver microsomes was noted, mouse pharmacokinetic profile of the compound having the best overall ADME properties was evaluated to reveal acceptable bioavailability (F=10.3%) and plasma levels achieved on oral administration.
Resumo:
Five G protein-coupled receptors (GPCRs) have been identified to be activated by free fatty acids (FFA). Among them, FFA1 (GPR40) and FFA4 (GPR120) bind long-chain fatty acids, FFA2 (GPR43) and FFA3 (GPR41) bind short-chain fatty acids and GPR84 binds medium-chain fatty acids. Free fatty acid receptors have now emerged as potential targets for the treatment of diabetes, obesity and immune diseases. The recent progress in crystallography of GPCRs has now enabled the elucidation of the structure of FFA1 and provided reliable templates for homology modelling of other FFA receptors. Analysis of the crystal structure and improved homology models, along with mutagenesis data and structure activity, highlighted an unusual arginine charge pairing interaction in FFA1-3 for receptor modulation, distinct structural features for ligand binding to FFA1 and FFA4 and an arginine of the second extracellular loop as a possible anchoring point for FFA at GPR84. Structural data will be helpful for searching novel small molecule modulators at the FFA receptors.
Resumo:
A number of research studies have reported abnormal plasma fatty acid profiles in children with ADHD along with some benefit of n−3 to symptoms of ADHD. However, it is currently unclear whether (lower) long chain-polyunsaturated fatty acids (LC-PUFAs) are related to ADHD pathology or to associated behaviours. The aim of this study was to test whether (1) ADHD children have abnormal plasma LC-PUFA levels and (2) ADHD symptoms and associated behaviours are correlated with LC-PUFA levels. Seventy-two, male children with (n=29) and without a clinical diagnosis of ADHD (n=43) were compared in their plasma levels of LC-PUFA. Plasma DHA was higher in the control group prior to statistical correction. Callous–unemotional (CU) traits were found to be significantly negatively related to both eicosapentaenoic acid (EPA), and total omega-3 in the ADHD group. The findings unveil for the first time that CU and anti-social traits in ADHD are associated with lower omega-3 levels.
Resumo:
The majority of children with Down syndrome (DS) develop Alzheimer's disease (AD) at an early age. Although long-chain n-3 fatty acids (FA) are protective of neurodegeneration, little is known about the FA status in DS. In the present study, we aimed to investigate whether children with DS presented altered plasma and erythrocyte membrane phospholipids (PL) FA composition, when compared with their non-affected siblings. Venous blood samples were analysed for plasma and erythrocyte membrane FA composition by TLC followed by GC techniques. Lipid molecular species were determined by electrospray ionisation/tandem MS (ESI-MS/MS). FA analysis measured by standard GC showed an increased concentration of MUFA and a decreased concentration of plasmalogens in major PL fractions, but there were no differences in the concentrations of arachidonic acid or DHA. However, as identified by ESI-MS/MS, children with DS had increased levels of the following erythrocyte PL molecular species: 16 : 0–16 : 0, 16 : 0–18 : 1 and 16 : 0–18 : 2n-6, with reduced levels of 16 : 0–20 : 4n-6 species. Children with DS presented significantly higher levels of MUFA in both plasma and erythrocyte membrane, as well as higher levels of saturated and monounsaturated molecular species. Of interest was the almost double proportion of 16 : 0–18 : 2n-6 and nearly half the proportion of 16 : 0–20 : 4n-6 of choline phosphoacylglycerol species in children with DS compared with their non-affected siblings. These significant differences were only revealed by ESI-MS/MS and were not observed in the GC analysis. Further investigations are needed to explore molecular mechanisms and to test the association between the pathophysiology of DS and the risk of AD.
Resumo:
The main thesis of this article is that the increasing recourse to the use of unmanned aerial systems in asymmetric warfare and the beginning routinization of U.S. drone operations represent part of an evolutionary change in the spatial ordering of global politics -- Using a heuristic framework based on actor-network theory, it is argued that practices of panoptic observation and selective airstrikes, being in need of legal justification, contribute to a reterritorialization of asymmetric conflicts -- Under a new normative spatial regime, a legal condition of state immaturity is constructed, which establishes a zone of conditional sovereignty subject to transnational aerial policing -- At the same time, this process is neither a deterministic result of the new technology nor a deliberate effect of policies to which drones are merely neutral instruments -- Rather, military technology and political decisions both form part of a long chain of action which has evolved under the specific circumstances of recent military interventions
Resumo:
O objetivo do presente trabalho foi analisar as características e os perfis lipídicos dos óleos brutos e refinados de rejeitos de carpa comum (Cyprinus carpio), obtidos através dos processos de ensilagem ácida e termomecânico de farinha de pescado. Também foram realizados o estudo da reação de alcoólise química do óleo de carpa e obtenção de concentrados de concentrados de ácidos graxos poliinsaturados (PUFAs), através da reação de complexação com uréia. O rendimento obtido em óleo bruto para ambos os processos foi em torno de 85% em relação ao óleo presente nas vísceras de carpa. Os óleos brutos obtidos através do processo de ensilagem e do processo termomecânico apresentaram diferenças significantivas (P < 0,05) para ácidos graxos livres, índice de peróxido, valor do ácido tiobarbitúrico e cor Lovibond. Entretanto, os óleos refinados obtidos por ambos os processos não apresentaram diferença significativa para a cor Lovibond, ácidos graxos livres e valores do ácido tiobarbitúrico. Os principais ácidos graxos identificados nos óleos bruto, branqueado e refinado de vísceras de carpa foram oléico, palmítico, palmitoléico, linoléico e linolênico constituindo aproximadamente 69,6% dos ácidos graxo totais do óleo refinado. A relação ω3/ω6 foi de aproximadamente 1,05 para o óleo refinado. Assim, o óleo refinado das vísceras de carpa pode ser considerado uma rica fonte de ácidos graxos essenciais do grupo ω3 e ω6. No estudo da reação de alcoólise química e obtenção dos concentrados de ácidos graxos poliinsaturados, foi realizada a comparação de três tratamentos para reação de alcoólise variando-se a concentração molar óleo:álcool (1:21, 1:27 e 1:39). Os tratamentos apresentaram diferenças significativas para as respostas rendimento em massa de ácidos graxos livres e índice de acidez. O maior rendimento para a reação de alcoólise foi utilizando a concentração molar de 1:39 (óleo:álcool). Na fração não complexada com uréia obteve-se aumento percentual de ácidos graxos insaturados e poliinsaturados de 31,9%, redução de saturados de 75%, e aumento do conteúdo dos ácidos graxos eicosapentaenóico e docosahexaenóico (EPA+DHA) de 85,3%. A fração não complexada com uréia pode ser considerada uma rica fonte de ácidos graxos poliinsaturados e insaturados com um total de 88,9% desses ácidos graxos.
Resumo:
L-carnitine is required for the transfer of long-chain fatty acids from the cytosol to the mitochondrial matrix for 13-oxidation of them and ractopamine, beta adrenergic agonists, have potential stimulating lipolysis and altering rates of protein degradation and synthesis. Present study was carried out to improve lipid body oxidation and protein-sparing action of fish through addition of L-carnitine and ractopamine to diet of rainbow trout, Oncorhynchus mykiss, Walbaum 1972. An eight-week feeding trial was carried out to evaluate the effects of supplementation of tree levels of L-carnitine tartrate (0, 1 and 2 g/kg) and two levels of ractopamine hydrochloride (0 and 10 ppm) on growth performance, fillet muscle fatty acid compositions and blood biochemical parameters in 288 juvenile rainbow trout (130 g) at 3X2 factorial experimental design. Ractopamine and 1 g/kg carnitine improved the specific growth rate, feed conversion ratio, protein efficiency ratio and weight gain at the end of experiment. The protein and lipid contents of fillet muscle were affected by the inclusion of 10 mg/kg ractopamine in the diet, increasing crude protein and reducing crude fat (P<0.05) of fish fillet muscle. The highest protein and lowest fat contents of fish fillet were observed in diet that contains 2 g/kg carnitine plus ractopamine. Ractopamine and carnitine increased levels of albumin, total protein and globulin in fish blood serum, but carnitine increased triacylglycerol and cholesterol. Fatty acids compositions of fish fillet were also affected by ractopamine and carnitine. All fatty acids except for eicosapentaenoic acid and docosahexaenoic acid, were increased by dietary supplementation of ractopamine. Total saturated fatty acids were not affected by carnitine. Supplementation (P>0.05). However, total n-3 poly unsaturated fatty acids were reduced by carnitine supplementation. A significant interaction was observed between ractopamine and carnitine supplementation regarding the saturated (P<0.01) and n-3 poly unsaturated fatty acid (P<0.001) of fish fillet. This study shows that supplementation of 1 g/kg carnitine and 10 ppm ractopamine could improve performance of juvenile rainbow trout and their combination in diet results in protein increment, fat reduction and change in profile of fatty acids in fillet muscle.
Resumo:
A human genome contains more than 20 000 protein-encoding genes. A human proteome, instead, has been estimated to be much more complex and dynamic. The most powerful tool to study proteins today is mass spectrometry (MS). MS based proteomics is based on the measurement of the masses of charged peptide ions in a gas-phase. The peptide amino acid sequence can be deduced, and matching proteins can be found, using software to correlate MS-data with sequence database information. Quantitative proteomics allow the estimation of the absolute or relative abundance of a certain protein in a sample. The label-free quantification methods use the intrinsic MS-peptide signals in the calculation of the quantitative values enabling the comparison of peptide signals from numerous patient samples. In this work, a quantitative MS methodology was established to study aromatase overexpressing (AROM+) male mouse liver and ovarian endometriosis tissue samples. The workflow of label-free quantitative proteomics was optimized in terms of sensitivity and robustness, allowing the quantification of 1500 proteins with a low coefficient of variance in both sample types. Additionally, five statistical methods were evaluated for the use with label-free quantitative proteomics data. The proteome data was integrated with other omics datasets, such as mRNA microarray and metabolite data sets. As a result, an altered lipid metabolism in liver was discovered in male AROM+ mice. The results suggest a reduced beta oxidation of long chain phospholipids in the liver and increased levels of pro-inflammatory fatty acids in the circulation in these mice. Conversely, in the endometriosis tissues, a set of proteins highly specific for ovarian endometrioma were discovered, many of which were under the regulation of the growth factor TGF-β1. This finding supports subsequent biomarker verification in a larger number of endometriosis patient samples.
Resumo:
Le syndrome de Leigh version canadienne-française (LSFC) est une maladie autosomale récessive causée par une mutation du gène LRPPRC, encodant une protéine du même nom. LRPPRC est impliquée dans la traduction des gènes mitochondriaux qui encodent certains complexes de la chaine respiratoire. Les répercussions biochimiques incluent un déficit tissu spécifique de la cytochrome c oxydase (COX), principalement dans le foie et le cerveau, et la survenue de crises d’acidose fatales chez 80 % des enfants atteints avant l’âge de 3-4 ans. L’identification d’options thérapeutiques demeure encore un défi de taille et ceci est en partie relié au manque de connaissances des fonctions biologiques de LRPPRC et des mécanismes impliqués dans la pathogenèse du LSFC, au niveau des dysfonctions mitochondriales résultantes. Afin d’étudier ces mécanismes, le consortium de l’acidose lactique, dont fait partie notre laboratoire, a récemment développé un modèle murin portant une ablation de LRPPRC spécifique au foie (souris H-Lrpprc-/-). L’objectif principal est de déterminer si ce modèle reproduit le phénotype pathologique observé dans les cultures de fibroblastes humains issus de biopsies de peau de patients LSFC. Dans le cadre des travaux de ce mémoire, nous avons amorcé la caractérisation de ce nouveau modèle, en examinant le phénotype général, l’histopathologie hépatique et les fonctions mitochondriales, et en nous focalisant principalement sur les fonctions respiratoires et la capacité à oxyder divers types de substrats. Nous avons observé un retard de croissance, une hépatomégalie ainsi que plusieurs anomalies histologiques du foie chez la souris HLrpprc-/-. De plus, l’ablation de LRPPRC induit un déficit du complexe IV, mais aussi de l’ATP synthase, et affecte l’oxydation des acides gras à longues chaines. À la lumière de ces résultats, nous croyons que le modèle murin H-Lrpprc-/- contribuera à l’avancement des connaissances générales sur LRPPRC, nous permettant de mieux comprendre l’influence de la protéine sur les fonctions mitochondriales.
Resumo:
International audience
Resumo:
Picornaviruses are a group of human and animal pathogens capable of inflicting serious public health diseases and economic burdens. Treatments options through vaccines for prevention or antivirals to cure infection are not available for the vast majority of these viruses. These shortcomings, in the development of vaccines or antivirals therapeutic, are linked to the genetic diversity and to an incomplete understanding of the biology of these viruses. Despite the diverse host range, this group of positive-strand RNA viruses shares the same replication mechanisms, including the development of membranous structures (replication organelles) in the cytoplasm of infected cells. The development of these membranous structures, which serve as sites for the replication of the viral RNA genome, has been linked to the hijacking of elements of the cellular membrane metabolism pathways. Here we show that upon picornavirus infection, there is a specific activation of acyl-CoA synthetase enzymes resulting in strong import and accumulation of long chain fatty acids in the cytoplasm of infected cells. We show that the newly imported fatty acids serve as a substrate for the upregulation of phosphatidylcholine synthesis required for the structural development of replication organelles. In this work, we identified that acyl-CoA synthetase long chain 3 (ACSL3) is required for the upregulation of lipids syntheses and the replication of poliovirus. We have shown that the poliovirus protein 2A was required but not sufficient for the activation of import of long chain fatty acids in infected cells. We demonstrated that the fatty acid import is upregulated upon infection by diverse picornaviruses and that such upregulation is not dependent on activation of ER stress response or the autophagy pathways. In this work, we have demonstrated that phosphatidylcholine was required for the structural development of replication organelles. Phosphatidylcholine synthesis was dispensable for the production of infectious particles at high MOI but required at a low MOI for the protection of the replication complexes from the cellular innate immunity mechanisms.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.