904 resultados para Long Distance Anaphora
Resumo:
We compare the critical behavior of the short-range Ising spin glass with a spin glass with long-range interactions which fall off as a power σ of the distance. We show that there is a value of σ of the long-range model for which the critical behavior is very similar to that of the short range model in four dimensions. We also study a value of σ for which we find the critical behavior to be compatible with that of the three-dimensional model, although we have much less precision than in the four-dimensional case.
Resumo:
Online education is no longer a trend, rather it is mainstream. In the Fall of 2012, 69.1% of chief academic leaders indicated online learning was critical to their long-term strategy and of the 20.6 million students enrolled in higher education, 6.7 million were enrolled in an online course (Allen & Seaman, 2013; United States Department of Education, 2013). The advent of online education and its rapid growth has forced academic institutions and faculty to question the current styles and techniques for teaching and learning. As developments in educational technology continue to advance, the ways in which we deliver and receive knowledge in both the traditional and online classrooms will further evolve. It is necessary to investigate and understand the progression and advancements in educational technology and the variety of methods used to deliver knowledge to improve the quality of education we provide today and motivate, inspire, and educate the students of the 21st century. This paper explores the atioevolution of distance education beginning with correspondence and the use of parcel post, to radio, then to television, and finally to online education.
Resumo:
We review recent developments in the use of optical solitons for communication systems spanning transoceanic distances. The implementation of "soliton control" to alleviate the detrimental impact of effects such as amplifier noise is shown to be critical for obtaining advantages over competing technologies. The potential performance of two control strategies, namely straight line filtering and synchronous phase modulation, is examined in detail. Design diagrams are used to determine the maximum permissible amplifier spacing, which is a key determinant of system economics. To focus the enquiry, two example system spans are taken, representing transatlantic and transpacific distances. It is concluded that straight line filtering provides very little improvement over a basic design without control. However synchronous phase modulation, which may be implemented using a handful of actively driven components, provides very substantial benefits. These may be used either to extend the overall bit-rate-distance product of the system or to increase the amplifier spacing at more moderate capacities.
Resumo:
This thesis experimentally examines the use of different techniques for optical fibre transmission over ultra long haul distances. Its format firstly examines the use of dispersion management as a means of achieving long haul communications. Secondly, examining the use concatenated NOLMs for DM autosoliton ultra long haul propagation, by comparing their performance with a generic system without NOLMs. Thirdly, timing jitter in concatenated NOLM system is examined and compared to the generic system and lastly issues of OTDM amplitude non-uniformity from channel to channel in a saturable absorber, specifically a NOLM, are raised. Transmission at a rate of 40Gbit/s is studied in an all-Raman amplified standard fibre link with amplifier spacing of the order of 80km. We demonstrate in this thesis that the detrimental effects associated with high power Raman amplification can be minimized by dispersion map optimization. As a result, a transmission distance of 1600 km (2000km including dispersion compensating fibre) has been achieved in standard single mode fibre. The use of concatenated NOLMs to provide a stable propagation regime has been proposed theoretically. In this thesis, the observation experimentally of autosoliton propagation is shown for the first time in a dispersion managed optical transmission system. The system is based on a strong dispersion map with large amplifier spacing. Operation at transmission rates of 10, 40 and 80Gbit/s is demonstrated. With an insertion of a stabilizing element to the NOLM, the transmission of a 10 and 20Gbit/s data stream was extended and demonstrated experimentally. Error-free propagation over 100 and 20 thousand kilometres has been achieved at 10 and 20Gbit/s respectively, with terrestrial amplifier spacing. The monitor of timing jitter is of importance to all optical systems. Evolution of timing jitter in a DM autosoliton system has been studied in this thesis and analyzed at bit ranges from 10Gbit/s to 80Gbit/s. Non-linear guiding by in-line regenerators considerably changes the dynamics of jitter accumulation. As transmission systems require higher data rates, the use of OTDM will become more prolific. The dynamics of switching and transmission of an optical signal comprising individual OTDM channels of unequal amplitudes in a dispersion-managed link with in-line non-linear fibre loop mirrors is investigated.
Resumo:
This thesis examines experimentally options for optical fibre transmission over oceanic distances. Its format follows the chronological evolution of ultra-long haul optical systems, commencing with opto-electronic regenerators as repeaters, progressing to optically amplified NRZ systems and finally solitonic propagation. In each case recirculating loop techniques are deployed to simplify the transmission experiments. Advances in high speed electronics have allowed regenerators operating at 10 Gbit/s to become a practical reality. By augmenting such devices with optical amplifiers it is possible to greatly enhance the repeater spacing. Work detailed in this thesis has culminated in the propagation of 10 Gbit/s data over 400,000 km with a repeater spacing of 160 km. System reliability and robustness are enhanced by the use of a directly modulated DFB laser transmitter and total insensitivity of the system to the signal state of polarisation. Optically amplified ultra-long haul NRZ systems have taken on particular importance with the impending deployment of TAT 12/13 and TPC 5. The performance of these systems is demonstrated to be primarily limited by analogue impairments such as the accumulation of amplifier noise, polarisation effects and optical non-linearities. These degradations may be reduced by the use of appropriate dispersion maps and by scrambling the transmitted state of signal polarisation. A novel high speed optically passive polarisation scrambler is detailed for the first time. At bit rates in excess of 10 Gbit/s it is shown that these systems are severely limited and do not offer the advantages that might be expected over regenerated links. Propagation using solitons as the data bits appears particularly attractive since the dispersive and non-linear effects of the fibre allow distortion free transmission. However, the generation of pure solitons is difficult but must be achieved if the uncontrolled transmission distance is to be maximised. This thesis presents a new technique for the stabilisation of an erbium fibre ring laser that has aUowed propagation of 2.5 Gbit/s solitons to the theoretical limit of ~ 18,000 km. At higher bit rates temporal jitter becomes a significant impairment and to aUow an increase in the aggregate line rate multiplexing in both time and polarisation domains has been proposed. These techniques are shown to be of only limited benefit in practical systems and ultimately some form of soliton transmission control is required. The thesis demonstrates synchronous retiming by amplitude modulation that has allowed 20 Gbit/s data to propagate 125,000 km error free with an amplifier spacing approaching the soliton period. Ultimately the speed of operation of such systems is limited by the electronics used and, thus, a new form of soliton control is demonstrated using all optical techniques to achieve synchronous phase modulation.
Resumo:
We review recent developments in the use of optical solitons for communication systems spanning transoceanic distances. The implementation of "soliton control" to alleviate the detrimental impact of effects such as amplifier noise is shown to be critical for obtaining advantages over competing technologies. The potential performance of two control strategies, namely straight line filtering and synchronous phase modulation, is examined in detail. Design diagrams are used to determine the maximum permissible amplifier spacing, which is a key determinant of system economics. To focus the enquiry, two example system spans are taken, representing transatlantic and transpacific distances. It is concluded that straight line filtering provides very little improvement over a basic design without control. However synchronous phase modulation, which may be implemented using a handful of actively driven components, provides very substantial benefits. These may be used either to extend the overall bit-rate-distance product of the system or to increase the amplifier spacing at more moderate capacities. © 1995 Academic Press. All rights reserved.
Resumo:
We experimentally compare the performance of standard single-mode fiber (SSMF) and UltraWave fiber (UWF) for ultra-long-haul (ULH) 40-Gb/s wavelength- division- multiplexing transmissions. We used the carrier-suppressed return-to-zero amplitude-shift-keying (CSRZ-ASK) and the carrier-suppressed return-to-zero differential-phase-shift-keying (CSRZ-DPSK) formats, which are particularly well-adapted to 40-Gb/s pulse-overlapped propagation. We demonstrate that transmission distance well beyond 2000 km can be reached on UWF with both the CSRZ-ASK and CSRZ-DPSK formats, or on SSMF with the CSRZ-DPSK format only, thus indicating that SSMF-based infrastructure of incumbent carriers can be upgraded at 40-Gb/s channel rates to ULH distances. © 2007 IEEE.
Resumo:
Experimental investigations of 10×118 Gbit/s DP-QPSK WDM transmission using three types of distributed Raman amplification techniques are presented. Novel ultra-long Raman fibre laser based amplification with second order counter-propagated pumping is compared with conventional first order and dual order counter-pumped Raman amplification. We demonstrate that URFL based amplification can extend the transmission reach up to a distance of 7520 km in comparison with 5010 km and 6180 km using first order and dual order Raman amplification respectively. © 2014 IEEE.
Resumo:
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.
Resumo:
There are limitations in recent research undertaken on attribute reduction in incomplete decision systems. In this paper, we propose a distance-based method for attribute reduction in an incomplete decision system. In addition, we prove theoretically that our method is more effective than some other methods.
Resumo:
Long reach-passive optical networks (LR-PON) are being proposed as a means of enabling ubiquitous fiber-to-the-home (FTTH) by massive sharing of network resources and therefore reducing per customer costs to affordable levels. In this paper, we analyze the chain solutions for LR-PON deployment in urban and rural areas at 100-Gb/s point-to-point transmission using dual polarization-quaternary phase shift-keying (DP-QPSK) modulation. The numerical analysis shows that with appropriate finite impulse response (FIR) filter designs, 100-Gb/s transmission can be achieved with at least 512 way split and up to 160 km total distance, which is sufficient for many of the optical paths in a practical situation, for point-to-point link from one LR-PON to another LR-PON through the optical switch at the metro nodes and across a core light path through the core network without regeneration.
Resumo:
Purpose: Several studies have suggested accommodative lags may serve as a stimulus for myopic growth, and while a blurred foveal image is believed to the main stimulus for accommodation, spectral composition of the retinal image is also believed to influence accommodative accuracy. Of particular interest is how altering spectral lighting conditions influences accommodation in the presence of soft multifocal contact lenses, which are currently being used off-label for myopia control. Methods: Accommodative responses were assessed using a Grand Seiko WAM-5500 autorefractor for four target distances: 25, 33, 50, and 100cm for 30 young adult subjects (14 myopic, 16 emmetropic; mean refractive errors (±SD, D) -4.22±2.04 and -0.15±0.67 respectively). Measurements were obtained with four different soft contact lenses, Single vision distance (SVD), Single vision near (SVN), Centre-Near (CN) and Centre-Distance (CD) (+1.50 add), and three different lighting conditions: red (peak λ 632nm), blue (peak λ 460nm), and white (peak λ 560nm). Corrections for chromatic differences in refraction were made prior to calculating accommodative errors. Results: The size of accommodative errors was significantly affected by lens design (p<0.001), lighting (p=0.027), and target distance (p=0.009). Mean accommodative errors were significantly larger with the SV lenses compared to the CD and CN designs (p<0.001). Errors were also significantly larger under blue light compared to white (p=0.004) and a significant interaction noted between lens design and lighting (p<0.001). Blue light generally decreased accommodative lags and increased accommodative leads relative to white and red light, the opposite was true of red light (p≤0.001). Lens design also significantly influenced direction of accommodative error (i.e. lag or lead) (p<0.001). Interactions with or between refractive groups were not found to be statistically significant for either the magnitude or direction of accommodative error (p>0.05 for all). Conclusions: Accuracy of accommodation is affected by both lens design and by wavelength of lighting. These accommodative lag data lend some support to recent speculation about the potential therapeutic value of lighting with a spectral bias towards blue during near work for myopia, although such treatment effects are likely to be more subtle under broad compared to the narrow spectrum lighting conditions used here.
Resumo:
The purpose of this research was to compare the delivery methods as practiced by higher education faculty teaching distance courses with recommended or emerging standard instructional delivery methods for distance education. Previous research shows that traditional-type instructional strategies have been used in distance education and that there has been no training to distance teach. Secondary data, however, appear to suggest emerging practices which could be pooled toward the development of standards. This is a qualitative study based on the constant comparative analysis approach of grounded theory.^ Participants (N = 5) of this study were full-time faculty teaching distance education courses. The observation method used was unobtrusive content analysis of videotaped instruction. Triangulation of data was accomplished through one-on-one in-depth interviews and from literature review. Due to the addition of non-media content being analyzed, a special time-sampling technique was designed by the researcher--influenced by content analyst theories of media-related data--to sample portions of the videotape instruction that were observed and counted. A standardized interview guide was used to collect data from in-depth interviews. Coding was done based on categories drawn from review of literature, and from Cranton and Weston's (1989) typology of instructional strategies. The data were observed, counted, tabulated, analyzed, and interpreted solely by the researcher. It should be noted however, that systematic and rigorous data collection and analysis led to credible data.^ The findings of this study supported the proposition that there are no standard instructional practices for distance teaching. Further, the findings revealed that of the emerging practices suggested by proponents and by faculty who teach distance education courses, few were practiced even minimally. A noted example was the use of lecture and questioning. Questioning, as a teaching tool was used a great deal, with students at the originating site but not with distance students. Lectures were given, but were mostly conducted in traditional fashion--long in duration and with no interactive component.^ It can be concluded from the findings that while there are no standard practices for instructional delivery for distance education, there appears to be sufficient information from secondary and empirical data to initiate some standard instructional practices. Therefore, grounded in this research data is the theory that the way to arrive at some instructional delivery standards for televised distance education is a pooling of the tacitly agreed-upon emerging practices by proponents and practicing instructors. Implicit in this theory is a need for experimental research so that these emerging practices can be tested, tried, and proven, ultimately resulting in formal standards for instructional delivery in television education. ^
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Purpose: The primary outcome of this study is to compare the axial length growth of white European myopic children wearing orthokeratology contact lenses (OK) to a control group (CT) over a 7-year period. Methods: Subjects 6–12 years of age with myopia −0.75 to −4.00DS and astigmatism ≤1.00DC were prospectively allocated OK or distance single-vision spectacles (SV) correction. Measurements of axial length (Zeiss IOLMaster), corneal topography, and cycloplegic refraction were taken at 6-month intervals over a 2-year period. Subjects were invited to return to the clinic approximately 5 years later (i.e., 7 years after the beginning of the study) for assessment of their ocular refractive and biometric components. The CT consisted of 4 SV and 12 subjects who switched from SV to soft contact lens wear after the initial 2 years of SV lens wear. Changes in axial length relative to baseline over a 7-year period were compared between groups. Results: Fourteen and 16 subjects from the OK and CT groups, respectively, were examined 6.7 ± 0.5 years after the beginning of the study. Statistically significant changes in the axial length were found over time and between groups (both p <0.001), but not for the time*group interaction (p = 0.125). The change in the axial length for the OK group was 22% (p = 0.328), 42% (p = 0.007), 40% (p = 0.020), 41% (p = 0.013), and 33% (p = 0.062) lower than the CT group following 6, 12, 18, 24, and 84 months of lens wear, respectively. Conclusion: A trend toward a reduction in the rate of axial elongation of the order of 33% was found in the OK group in comparison to the CT group following 7 years of lens wear.