861 resultados para Loading and unloading
Resumo:
Dynamically reconfigurable hardware is a promising technology that combines in the same device both the high performance and the flexibility that many recent applications demand. However, one of its main drawbacks is the reconfiguration overhead, which involves important delays in the task execution, usually in the order of hundreds of milliseconds, as well as high energy consumption. One of the most powerful ways to tackle this problem is configuration reuse, since reusing a task does not involve any reconfiguration overhead. In this paper we propose a configuration replacement policy for reconfigurable systems that maximizes task reuse in highly dynamic environments. We have integrated this policy in an external taskgraph execution manager that applies task prefetch by loading and executing the tasks as soon as possible (ASAP). However, we have also modified this ASAP technique in order to make the replacements more flexible, by taking into account the mobility of the tasks and delaying some of the reconfigurations. In addition, this replacement policy is a hybrid design-time/run-time approach, which performs the bulk of the computations at design time in order to save run-time computations. Our results illustrate that the proposed strategy outperforms other state-ofthe-art replacement policies in terms of reuse rates and achieves near-optimal reconfiguration overhead reductions. In addition, by performing the bulk of the computations at design time, we reduce the execution time of the replacement technique by 10 times with respect to an equivalent purely run-time one.
Resumo:
The particulate matter distribution (PM) trends that exist in catalyzed particulate filters (CPFs) after loading, passive oxidation, active regeneration, and post loading conditions are not clearly understood. These data are required to optimize the operation of CPFs, prevent damage to the CPFs caused by non-uniform distributions, and develop accurate CPF models. To develop an understanding of PM distribution trends, multiple tests were conducted and the PM distribution was measured in three dimensions using a terahertz wave scanner. The results of this work indicate that loading, passive oxidation, active regeneration, and post loading can all cause non-uniform PM distributions. The density of the PM in the substrate after loading and the amount of PM that is oxidized during passive oxidations and active regenerations affect the uniformity of the distribution. Post loading that occurs after active regenerations result in distributions that are less uniform than post loading that occurs after passive oxidations.
Resumo:
The Mediterranean silvo-pastoral system known as Montado, in Portugal, is a complex land use system composed of an open tree stratum in various densities and an herbaceous layer, used for livestock grazing. Livestock also profit from the acorns, and the grazing contributes to avoid shrub encroachment. In the last 20 years, subsidies from the European Union have greatly promoted cattle rearing in this system and the introduction of heavy breeds, at the expense of sheep, goats or the native cattle breeds. The balance of the traditional system is thus threatened, and a precise assessment of the balance between the different components of the system, therefore is highly needed. The goal of this study was to gain a better under- standing of a Montado farm system with cattle rearing as the major economic activity by applying the emergy evaluation method to calculate indices of yield, investment, environmental loading and sustainability. By integrating different ecosystem components, the emergy evaluation method allows a comprehensive evaluation of this complex and multifunctional system at the scale of an individual farm. This method provides a set of indices that can help us understand the system and design management strategies that maximize emergy flow in the farm. In this paper, we apply the emergy evaluation method to a Montado farm with cattle rearing, as a way to gain a better understanding of this system at the farm scale. The value for the transformity of veal (2.66E?06 sej J-1) is slightly higher, when compared to other systems producing protein. That means that the investment of nature and man in this product was higher and it requires a premium price on the market. The renewa- bility for Holm Oaks Farm (49 %), lower than for other similar systems, supports the assumption that this is a farm in which, comparing with others, the number of purchased inputs in relation to renewable inputs provided by nature, is higher. The Emergy Investment Ratio is 0.91 for cattle rearing compared to a value of 0.49 for cork and 0.43 for firewood harvesting, making it clear that cattle rearing is a more labor demanding activity comparing with extractive activities as cork and firewood harvesting.
Resumo:
Investigation of the fracture mode for hard and soft wheat endosperm was aimed at gaining a better understanding of the fragmentation process. Fracture mechanical characterization was based on the three-point bending test which enables stable crack propagation to take place in small rectangular pieces of wheat endosperm. The crack length can be measured in situ by using an optical microscope with light illumination from the side of the specimen or from the back of the specimen. Two new techniques were developed and used to estimate the fracture toughness of wheat endosperm, a geometric approach and a compliance method. The geometric approach gave average fracture toughness values of 53.10 and 27.0 J m(-2) for hard and soft endosperm, respectively. Fracture toughness estimated using the compliance method gave values of 49.9 and 29.7 J m(-2) for hard and soft endosperm, respectively. Compressive properties of the endosperm in three mutually perpendicular axes revealed that the hard and soft endosperms are isotropic composites. Scanning electron microscopy (SEM) observation of the fracture surfaces and the energy-time curves of loading-unloading cycles revealed that there was a plastic flow during crack propagation for both the hard and soft endosperms, and confirmed that the fracture mode is significantly related to the adhesion level between starch granules and the protein matrix.
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
Bomb attacks carried out by terrorists, targeting high occupancy buildings, have become increasingly common in recent times. Large numbers of casualties and property damage result from overpressure of the blast followed by failing of structural elements. Understanding the blast response of multi-storey buildings and evaluating their remaining life have therefore become important. Response and damage analysis of single structural components, such as columns or slabs, to explosive loads have been examined in the literature, but the studies on blast response and damage analysis of structural frames in multi-storey buildings is limited and this is necessary for assessing the vulnerability of them. This paper investigates the blast response and damage evaluation of reinforced concrete (RC) frames, designed for normal gravity loads, in order to evaluate their remaining life. Numerical modelling and analysis were carried out using the explicit finite element software, LS DYNA. The modelling and analysis takes into consideration reinforcement details together and material performance under higher strain rates. Damage indices for columns are calculated based on their residual and original capacities. Numerical results generated in the can be used to identify relationships between the blast load parameters and the column damage. Damage index curve will provide a simple means for assessing the damage to a typical multi-storey building RC frame under an external bomb circumstance.
Resumo:
Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.
Resumo:
This study directly measured the load acting on the abutment of the osseointegrated implant system of transfemoral amputees during level walking, and studied the variability of the load within and among amputees. Twelve active transfemoral amputees (age: 54±12 years, mass:84.3±16.3 kg, height: 17.8±0.10 m) fitted with an osseointegrated implant for over 1 year participated in the study. The load applied on the abutment was measured during unimpeded, level walking in a straight line using a commercial six-channel transducer mounted between the abutment and the prosthetic knee. The pattern and the magnitude of the three-dimensional forces and moments were revealed. Results showed a low step-to-step variability of each subject, but a high subject-to-subject variability in local extrema of body-weight normalized forces and moments and impulse data. The high subject-to-subject variability suggests that the mechanical design of the implant system should be customized for each individual, or that a fit-all design should take into consideration the highest values of load within a broad range of amputees. It also suggests specific loading regime in rehabilitation training are necessary for a given subject. Thus the loading magnitude and variability demonstrated should be useful in designing an osseointegrated implant system better able to resist mechanical failure and in refining the rehabilitation protocol.
Resumo:
Falling represents a health risk for lower limb amputees fitted with an osseointegrated fixation mainly because of the potential damage to the fixation. The purpose of this study was to characterise a real forward fall that occurred inadvertently to a transfemoral amputee fitted with an osseointegrated fixation while attending a gait measurement session to assess the load applied on the residuum. The objective was to analyse the load applied on the fixation with an emphasis on the sequence of events, the pattern and the magnitude of the forces and moments. The load was measured directly at 200 Hz using a six-channel transducer. Complementary video footage was also studied. The fall was divided into four phases: loading (240 ms), descent (620 ms), impact (365 ms) and recovery (2495 ms). The main impact forces and moments occurred 870 ms and 915 ms after the heel contact, and corresponded to 133 %BW and 17 %BWm, or 1.2 and 11.2 times the maximum forces and moments applied during the previous steps of the participant, respectively. This study provided key information to engineers and clinicians facing the challenge to design equipment, and rehabilitation and exercise programs to restore safely the locomotion of lower limb amputees.