828 resultados para Linear regression analysis
Resumo:
The purpose of this study was to better understand the study behaviors and habits of university undergraduate students. It was designed to determine whether undergraduate students could be grouped based on their self-reported study behaviors and if any grouping system could be determined, whether group membership was related to students’ academic achievement. A total of 152 undergraduate students voluntarily participated in the current study by completing the Study Behavior Inventory instrument. All participants were enrolled in fall semester of 2010 at Florida International University. The Q factor analysis technique using principal components extraction and a varimax rotation was used in order to examine the participants in relation to each other and to detect a pattern of intercorrelations among participants based on their self-reported study behaviors. The Q factor analysis yielded a two factor structure representing two distinct student types among participants regarding their study behaviors. The first student type (i.e., Factor 1) describes proactive learners who organize both their study materials and study time well. Type 1 students are labeled “Proactive Learners with Well-Organized Study Behaviors”. The second type (i.e., Factor 2) represents students who are poorly organized as well as being very likely to procrastinate. Type 2 students are labeled Disorganized Procrastinators. Hierarchical linear regression was employed to examine the relationship between student type and academic achievement as measured by current grade point averages (GPAs). The results showed significant differences in GPAs between Type 1 and Type 2 students at the .05 significance level. Furthermore, student type was found to be a significant predictor of academic achievement beyond and above students’ attribute variables including sex, age, major, and enrollment status. The study has several implications for educational researchers, practitioners, and policy makers in terms of improving college students' learning behaviors and outcomes.
Resumo:
Hydrophobicity as measured by Log P is an important molecular property related to toxicity and carcinogenicity. With increasing public health concerns for the effects of Disinfection By-Products (DBPs), there are considerable benefits in developing Quantitative Structure and Activity Relationship (QSAR) models capable of accurately predicting Log P. In this research, Log P values of 173 DBP compounds in 6 functional classes were used to develop QSAR models, by applying 3 molecular descriptors, namely, Energy of the Lowest Unoccupied Molecular Orbital (ELUMO), Number of Chlorine (NCl) and Number of Carbon (NC) by Multiple Linear Regression (MLR) analysis. The QSAR models developed were validated based on the Organization for Economic Co-operation and Development (OECD) principles. The model Applicability Domain (AD) and mechanistic interpretation were explored. Considering the very complex nature of DBPs, the established QSAR models performed very well with respect to goodness-of-fit, robustness and predictability. The predicted values of Log P of DBPs by the QSAR models were found to be significant with a correlation coefficient R2 from 81% to 98%. The Leverage Approach by Williams Plot was applied to detect and remove outliers, consequently increasing R 2 by approximately 2% to 13% for different DBP classes. The developed QSAR models were statistically validated for their predictive power by the Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross validation methods. Finally, Monte Carlo simulation was used to assess the variations and inherent uncertainties in the QSAR models of Log P and determine the most influential parameters in connection with Log P prediction. The developed QSAR models in this dissertation will have a broad applicability domain because the research data set covered six out of eight common DBP classes, including halogenated alkane, halogenated alkene, halogenated aromatic, halogenated aldehyde, halogenated ketone, and halogenated carboxylic acid, which have been brought to the attention of regulatory agencies in recent years. Furthermore, the QSAR models are suitable to be used for prediction of similar DBP compounds within the same applicability domain. The selection and integration of various methodologies developed in this research may also benefit future research in similar fields.
Resumo:
The known moss flora of Terra Nova National Park, eastern Newfoundland, comp~ises 210 species. Eighty-two percent of the moss species occurring in Terra Nova are widespread or widespread-sporadic in Newfoundland. Other Newfoundland distributional elements present in the Terra Nova moss flora are the northwestern, southern, southeastern, and disjunct elements, but four of the mosses occurring in Terra Nova appear to belong to a previously unrecognized northeastern element of the Newfoundland flora. The majority (70.9%) of Terra Nova's mosses are of boreal affinity and are widely distributed in the North American coniferous forest belt. An additional 10.5 percent of the Terra Nova mosses are cosmopolitan while 9.5 percent are temperate and 4.8 percent are arctic-montane species. The remaining 4.3 percent of the mosses are of montane affinity, and disjunct between eastern and western North America. In Terra Nova, temperate species at their northern limit are concentrated in balsam fir stands, while arctic-montane species are restricted to exposed cliffs, scree slopes, and coastal exposures. Montane species are largely confined to exposed or freshwater habitats. Inability to tolerate high summer temperatures limits the distributions of both arctic-montane and montane species. In Terra Nova, species of differing phytogeographic affinities co-occur on cliffs and scree slopes. The microhabitat relationships of five selected species from such habitats were evaluated by Discriminant Functions Analysis and Multiple Regression Analysis. The five mosses have distinct and different microhabitats on cliffs and scree slopes in Terra Nova, and abundance of all but one is associated with variation in at least one microhabitat variable. Micro-distribution of Grimmia torquata, an arctic-montane species at its southern limit, appears to be deterJ]lined by sensitivity to high summer temperatures. Both southern mosses at their northern limit (Aulacomnium androgynum, Isothecium myosuroides) appear to be limited by water availability and, possibly, by low winter temperatures. The two species whose distributions extend both north and south or the study area (Encalypta procera, Eurhynchium pulchellum) show no clear relationship with microclimate. Dispersal factors have played a significant role in the development of the Terra Nova moss flora. Compared to the most likely colonizing source (i .e. the rest of the island of Newfoundland), species with small diaspores have colonized the study area to a proportionately much greater extent than have species with large diaspores. Hierarchical log-linear analysis indicates that this is so for all affinity groups present in Terra Nova. The apparent dispersal effects emphasize the comparatively recent glaciation of the area, and may also have been enhanced by anthropogenic influences. The restriction of some species to specific habitats, or to narrowly defined microhabitats, appears to strengthen selection for easily dispersed taxa.
Resumo:
This work outlines the theoretical advantages of multivariate methods in biomechanical data, validates the proposed methods and outlines new clinical findings relating to knee osteoarthritis that were made possible by this approach. New techniques were based on existing multivariate approaches, Partial Least Squares (PLS) and Non-negative Matrix Factorization (NMF) and validated using existing data sets. The new techniques developed, PCA-PLS-LDA (Principal Component Analysis – Partial Least Squares – Linear Discriminant Analysis), PCA-PLS-MLR (Principal Component Analysis – Partial Least Squares –Multiple Linear Regression) and Waveform Similarity (based on NMF) were developed to address the challenging characteristics of biomechanical data, variability and correlation. As a result, these new structure-seeking technique revealed new clinical findings. The first new clinical finding relates to the relationship between pain, radiographic severity and mechanics. Simultaneous analysis of pain and radiographic severity outcomes, a first in biomechanics, revealed that the knee adduction moment’s relationship to radiographic features is mediated by pain in subjects with moderate osteoarthritis. The second clinical finding was quantifying the importance of neuromuscular patterns in brace effectiveness for patients with knee osteoarthritis. I found that brace effectiveness was more related to the patient’s unbraced neuromuscular patterns than it was to mechanics, and that these neuromuscular patterns were more complicated than simply increased overall muscle activity, as previously thought.
Resumo:
Quantile regression (QR) was first introduced by Roger Koenker and Gilbert Bassett in 1978. It is robust to outliers which affect least squares estimator on a large scale in linear regression. Instead of modeling mean of the response, QR provides an alternative way to model the relationship between quantiles of the response and covariates. Therefore, QR can be widely used to solve problems in econometrics, environmental sciences and health sciences. Sample size is an important factor in the planning stage of experimental design and observational studies. In ordinary linear regression, sample size may be determined based on either precision analysis or power analysis with closed form formulas. There are also methods that calculate sample size based on precision analysis for QR like C.Jennen-Steinmetz and S.Wellek (2005). A method to estimate sample size for QR based on power analysis was proposed by Shao and Wang (2009). In this paper, a new method is proposed to calculate sample size based on power analysis under hypothesis test of covariate effects. Even though error distribution assumption is not necessary for QR analysis itself, researchers have to make assumptions of error distribution and covariate structure in the planning stage of a study to obtain a reasonable estimate of sample size. In this project, both parametric and nonparametric methods are provided to estimate error distribution. Since the method proposed can be implemented in R, user is able to choose either parametric distribution or nonparametric kernel density estimation for error distribution. User also needs to specify the covariate structure and effect size to carry out sample size and power calculation. The performance of the method proposed is further evaluated using numerical simulation. The results suggest that the sample sizes obtained from our method provide empirical powers that are closed to the nominal power level, for example, 80%.
Resumo:
Objectives: The primary aim of this study was to investigate partially dentate elders' willingness-to-pay (WTP) for two different tooth replacement strategies: Removable Partial Dentures (RPDs) and, functionally orientated treatment according to the principles of the Shortened Dental Arch (SDA). The secondary aim was to measure the same patient groups' WTP for dental implant treatment.Methods: 55 patients who had completed a previous RCT comparing two tooth replacement strategies (RPDs (n=27) and SDA (n=28)) were recruited (Trial Registration no. ISRCTN26302774). Patients were asked to indicate their WTP for treatment to replace missing teeth in a number of hypothetical scenarios using the payment card method of contingency evaluation coupled to different costs. Data were collected on patients' social class, income levels and other social circumstances. A Mann-Whitney U Test was used to compare differences in WTP between the two treatment groups. To investigate predictive factors for WTP, multiple linear regression analyses were conducted.Results: The median age for the patient sample was 72.0 years (IQR: 71-75 years). Patients who had been provided with RPDs indicated that their WTP for this treatment strategy was significantly higher (€550; IQR: 500-650) than those patients who had received SDA treatment (€500; IQR: 450-550) (p=0.003). However patients provided with RPDs indicated that their WTP for SDA treatment (€650; IQR: 600-650) was also significantly higher than those patients who had actually received functionally orientated treatment (€550; IQR: 500-600) (p<0.001). The results indicated that both current income levels and previous treatment allocation were significantly correlated to WTP for both the RPD and the SDA groups. Patients in both treatment groups exhibited little WTP for dental implant treatment with a median value recorded which was half the market value for this treatment (€1000; IQR: 500-1000).Conclusions: Amongst this patient cohort previous treatment experience had a strong influence on WTP as did current income levels. Both treatment groups indicated a very strong WTP for simpler, functionally orientated care using adhesive fixed prostheses (SDA) over conventional RPDs. Clinical significance: Partially dentate older patients expressed a strong preference for functionally orientated tooth replacement as an alternative to conventional RPDs.
Resumo:
We present a detailed analysis of the application of a multi-scale Hierarchical Reconstruction method for solving a family of ill-posed linear inverse problems. When the observations on the unknown quantity of interest and the observation operators are known, these inverse problems are concerned with the recovery of the unknown from its observations. Although the observation operators we consider are linear, they are inevitably ill-posed in various ways. We recall in this context the classical Tikhonov regularization method with a stabilizing function which targets the specific ill-posedness from the observation operators and preserves desired features of the unknown. Having studied the mechanism of the Tikhonov regularization, we propose a multi-scale generalization to the Tikhonov regularization method, so-called the Hierarchical Reconstruction (HR) method. First introduction of the HR method can be traced back to the Hierarchical Decomposition method in Image Processing. The HR method successively extracts information from the previous hierarchical residual to the current hierarchical term at a finer hierarchical scale. As the sum of all the hierarchical terms, the hierarchical sum from the HR method provides an reasonable approximate solution to the unknown, when the observation matrix satisfies certain conditions with specific stabilizing functions. When compared to the Tikhonov regularization method on solving the same inverse problems, the HR method is shown to be able to decrease the total number of iterations, reduce the approximation error, and offer self control of the approximation distance between the hierarchical sum and the unknown, thanks to using a ladder of finitely many hierarchical scales. We report numerical experiments supporting our claims on these advantages the HR method has over the Tikhonov regularization method.
Resumo:
C3S2E '16 Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering
Resumo:
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
Resumo:
The drugs studied in this work have been reportedly used to commit drug-facilitated sexual assault (DFSA), commonly known as "date rape". Detection of the drugs was performed using high-performance liquid chromatography with ultraviolet detection (HPLC/UV) and identified with high performance-liquid chromatography mass spectrometry (HPLC/MS) using selected ion monitoring (SIM). The objective of this study was to develop a single HPLC method for the simultaneous detection, identification and quantitation of these drugs. The following drugs were simultaneously analyzed: Gamma-hydroxybutyrate (GHB), scopolamine, lysergic acid diethylamide, ketamine, flunitrazepam, and diphenhydramine. The results showed increased sensitivity with electrospray (ES) ionization versus atmospheric pressure chemical ionization (APCI) using HPLC/MS. HPLC/ES/MS was approximately six times more sensitive than HPLC/APCI/MS and about fifty times more sensitive than HPLC/UV. A limit of detection (LOD) of 100 ppb was achieved for drug analysis using this method. The average linear regression coefficient of correlation squared (r2) was 0.933 for HPLC/UV and 0.998 for HPLC/ES/MS. The detection limits achieved by this method allowed for the detection of drug dosages used in beverage tampering. This method can be used to screen beverages suspected of drug tampering. The results of this study demonstrated that solid phase microextraction (SPME) did not improve sensitivity as an extraction technique when compared to direct injections of the drug standards.
Resumo:
OBJECTIVE: To evaluate the scored Patient-generated Subjective Global Assessment (PG-SGA) tool as an outcome measure in clinical nutrition practice and determine its association with quality of life (QoL). DESIGN: A prospective 4 week study assessing the nutritional status and QoL of ambulatory patients receiving radiation therapy to the head, neck, rectal or abdominal area. SETTING: Australian radiation oncology facilities. SUBJECTS: Sixty cancer patients aged 24-85 y. INTERVENTION: Scored PG-SGA questionnaire, subjective global assessment (SGA), QoL (EORTC QLQ-C30 version 3). RESULTS: According to SGA, 65.0% (39) of subjects were well-nourished, 28.3% (17) moderately or suspected of being malnourished and 6.7% (4) severely malnourished. PG-SGA score and global QoL were correlated (r=-0.66, P<0.001) at baseline. There was a decrease in nutritional status according to PG-SGA score (P<0.001) and SGA (P<0.001); and a decrease in global QoL (P<0.001) after 4 weeks of radiotherapy. There was a linear trend for change in PG-SGA score (P<0.001) and change in global QoL (P=0.003) between those patients who improved (5%) maintained (56.7%) or deteriorated (33.3%) in nutritional status according to SGA. There was a correlation between change in PG-SGA score and change in QoL after 4 weeks of radiotherapy (r=-0.55, P<0.001). Regression analysis determined that 26% of the variation of change in QoL was explained by change in PG-SGA (P=0.001). CONCLUSION: The scored PG-SGA is a nutrition assessment tool that identifies malnutrition in ambulatory oncology patients receiving radiotherapy and can be used to predict the magnitude of change in QoL.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) is the most common deformity of the spine, affecting 2-4% of the population. Previous studies have shown that the vertebrae in scoliotic spines undergo abnormal shape changes, however there has been little exploration of how scoliosis affects bone density distribution within the vertebrae. In this study, existing CT scans of 53 female idiopathic scoliosis patients with right-sided main thoracic curves were used to measure the lateral (right to left) bone density profile at mid-height through each vertebral body. Five key bone density profile measures were identified from each normalised bone density distribution, and multiple regression analysis was performed to explore the relationship between bone density distribution and patient demographics (age, height, weight, body mass index (BMI), skeletal maturity, time since Menarche, vertebral level, and scoliosis curve severity). Results showed a marked convex/concave asymmetry in bone density for vertebral levels at or near the apex of the scoliotic curve. At the apical vertebra, mean bone density at the left side (concave) cortical shell was 23.5% higher than for the right (convex) cortical shell, and cancellous bone density along the central 60% of the lateral path from convex to concave increased by 13.8%. The centre of mass of the bone density profile at the thoracic curve apex was located 53.8% of the distance along the lateral path, indicating a shift of nearly 4% toward the concavity of the deformity. These lateral bone density gradients tapered off when moving away from the apical vertebra. Multi-linear regressions showed that the right cortical shell peak bone density is significantly correlated with skeletal maturity, with each Risser increment corresponding to an increase in mineral equivalent bone density of 4-5%. There were also statistically significant relationships between patient height, weight and BMI, and the gradient of cancellous bone density along the central 60% of the lateral path. Bone density gradient is positively correlated with weight, and negatively correlated with height and BMI, such that at the apical vertebra, a unit decrease in BMI corresponds to an almost 100% increase in bone density gradient.
Resumo:
This thesis details methodology to estimate urban stormwater quality based on a set of easy to measure physico-chemical parameters. These parameters can be used as surrogate parameters to estimate other key water quality parameters. The key pollutants considered in this study are nitrogen compounds, phosphorus compounds and solids. The use of surrogate parameter relationships to evaluate urban stormwater quality will reduce the cost of monitoring and so that scientists will have added capability to generate a large amount of data for more rigorous analysis of key urban stormwater quality processes, namely, pollutant build-up and wash-off. This in turn will assist in the development of more stringent stormwater quality mitigation strategies. The research methodology was based on a series of field investigations, laboratory testing and data analysis. Field investigations were conducted to collect pollutant build-up and wash-off samples from residential roads and roof surfaces. Past research has identified that these impervious surfaces are the primary pollutant sources to urban stormwater runoff. A specially designed vacuum system and rainfall simulator were used in the collection of pollutant build-up and wash-off samples. The collected samples were tested for a range of physico-chemical parameters. Data analysis was conducted using both univariate and multivariate data analysis techniques. Analysis of build-up samples showed that pollutant loads accumulated on road surfaces are higher compared to the pollutant loads on roof surfaces. Furthermore, it was found that the fraction of solids smaller than 150 ìm is the most polluted particle size fraction in solids build-up on both roads and roof surfaces. The analysis of wash-off data confirmed that the simulated wash-off process adopted for this research agrees well with the general understanding of the wash-off process on urban impervious surfaces. The observed pollutant concentrations in wash-off from road surfaces were different to pollutant concentrations in wash-off from roof surfaces. Therefore, firstly, the identification of surrogate parameters was undertaken separately for roads and roof surfaces. Secondly, a common set of surrogate parameter relationships were identified for both surfaces together to evaluate urban stormwater quality. Surrogate parameters were identified for nitrogen, phosphorus and solids separately. Electrical conductivity (EC), total organic carbon (TOC), dissolved organic carbon (DOC), total suspended solids (TSS), total dissolved solids (TDS), total solids (TS) and turbidity (TTU) were selected as the relatively easy to measure parameters. Consequently, surrogate parameters for nitrogen and phosphorus were identified from the set of easy to measure parameters for both road surfaces and roof surfaces. Additionally, surrogate parameters for TSS, TDS and TS which are key indicators of solids were obtained from EC and TTU which can be direct field measurements. The regression relationships which were developed for surrogate parameters and key parameter of interest were of a similar format for road and roof surfaces, namely it was in the form of simple linear regression equations. The identified relationships for road surfaces were DTN-TDS:DOC, TP-TS:TOC, TSS-TTU, TDS-EC and TSTTU: EC. The identified relationships for roof surfaces were DTN-TDS and TSTTU: EC. Some of the relationships developed had a higher confidence interval whilst others had a relatively low confidence interval. The relationships obtained for DTN-TDS, DTN-DOC, TP-TS and TS-EC for road surfaces demonstrated good near site portability potential. Currently, best management practices are focussed on providing treatment measures for stormwater runoff at catchment outlets where separation of road and roof runoff is not found. In this context, it is important to find a common set of surrogate parameter relationships for road surfaces and roof surfaces to evaluate urban stormwater quality. Consequently DTN-TDS, TS-EC and TS-TTU relationships were identified as the common relationships which are capable of providing measurements of DTN and TS irrespective of the surface type.
Resumo:
Boards of directors are thought to provide access to a wealth of knowledge and resources for the companies they serve, and are considered important to corporate governance. Under the Resource Based View (RBV) of the firm (Wernerfelt, 1984) boards are viewed as a strategic resource available to firms. As a consequence there has been a significant research effort aimed at establishing a link between board attributes and company performance. In this thesis I explore and extend the study of interlocking directorships (Mizruchi, 1996; Scott 1991a) by examining the links between directors’ opportunity networks and firm performance. Specifically, I use resource dependence theory (Pfeffer & Salancik, 1978) and social capital theory (Burt, 1980b; Coleman, 1988) as the basis for a new measure of a board’s opportunity network. I contend that both directors’ formal company ties and their social ties determine a director’s opportunity network through which they are able to access and mobilise resources for their firms. This approach is based on recent studies that suggest the measurement of interlocks at the director level, rather than at the firm level, may be a more reliable indicator of this phenomenon. This research uses publicly available data drawn from Australia’s top-105 listed companies and their directors in 1999. I employ Social Network Analysis (SNA) (Scott, 1991b) using the UCINET software to analyse the individual director’s formal and social networks. SNA is used to measure a the number of ties a director has to other directors in the top-105 company director network at both one and two degrees of separation, that is, direct ties and indirect (or ‘friend of a friend’) ties. These individual measures of director connectedness are aggregated to produce a board-level network metric for comparison with measures of a firm’s performance using multiple regression analysis. Performance is measured with accounting-based and market-based measures. Findings indicate that better-connected boards are associated with higher market-based company performance (measured by Tobin’s q). However, weaker and mostly unreliable associations were found for accounting-based performance measure ROA. Furthermore, formal (or corporate) network ties are a stronger predictor of market performance than total network ties (comprising social and corporate ties). Similarly, strong ties (connectedness at degree-1) are better predictors of performance than weak ties (connectedness at degree-2). My research makes four contributions to the literature on director interlocks. First, it extends a new way of measuring a board’s opportunity network based on the director rather than the company as the unit of interlock. Second, it establishes evidence of a relationship between market-based measures of firm performance and the connectedness of that firm’s board. Third, it establishes that director’s formal corporate ties matter more to market-based firm performance than their social ties. Fourth, it establishes that director’s strong direct ties are more important to market-based performance than weak ties. The thesis concludes with implications for research and practice, including a more speculative interpretation of these results. In particular, I raise the possibility of reverse causality – that is networked directors seek to join high-performing companies. Thus, the relationship may be a result of symbolic action by companies seeking to increase the legitimacy of their firms rather than a reflection of the social capital available to the companies. This is an important consideration worthy of future investigation.