972 resultados para Linear elastic
Resumo:
A miniature furnace suitable for routine collection of x-ray data up to 1000°C from single crystals on the Hilger and Watts linear diffractometer, without restricting the normally allowed region of reciprocal space on the diffractometer, is described. The crystal is heated primarily by radiation from a surrounding current-heated, stationary platinum coil wound on a silica bracket. The coil is split at its middle to provide a 4 mm gap for crystal mounting and x-irradiation. The crystal, mounted on a standard goniometer head, can be rotated and centred freely, as in the room temperature case. There is no need for any radiation shields or water-cooling arrangement. Investigations up to 1500°C are possible with slight modifications of the furnace.
Resumo:
The pulse-echo apparatus, designed and constructed by the author, has been used to reinvestigate the elastic properties of the eighteen optical glasses. The elastic constants are correct to 0·5%. The results are compared with the earlier investigation which utilised the optical method. The possible causes for large discrepancies observed are critically and briefly discussed. A qualitative interpretation of the results has been successfully attempted. The acoustic velocity increases with the decrease in lead and barium oxides and with increase in calcium oxide and boron trioxide components.
Resumo:
Using a Fourier-integral approach, the problem of stress analysis in a composite plane consisting of two half-planes of different elastic properties rigidly joined along their boundaries has been solved. The analysis is done for a force acting in one of the half-planes for both cases when the force acts parallel and perpendicular to the interface. As a particular case, the interface stresses are evaluated when the interface is smooth. Some properties of the normal stress at the interface are discussed both for plane stress and plane strain conditions.
Resumo:
This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates. A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses and displacements in flexure, forced vibration and "beam-column" type problems and to closed form characteristic equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important conclusions regarding the validity and effects of the assumptions made in the approximate theories.
Resumo:
The aim of the paper is to investigate the propagation of a pulse in a micropolar fluid contained in a visco-elastic membrane. It was undertaken with a view to study how closely we can approximate the flow of blood in arteries by the above model. We find that for large Reynolds number, the effect of micropolarity is hardly perceptible, whereas for small Reynolds numbers it is of considerable importance.
Resumo:
The transient response of non-linear spring mass systems with Coulomb damping, when subjected to a step function is investigated. For a restricted class of non-linear spring characteristics, exact expressions are developed for (i) the first peak of the response curves, and (ii) the time taken to reach it. A simple, yet accurate linearization procedure is developed for obtaining the approximate time required to reach the first peak, when the spring characteristic is a general function of the displacement. The results are presented graphically in non-dimensional form.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
An exact solution for the free vibration problem of non-linear cubic spring mass system with Coulomb damping is obtained during each half cycle, in terms of elliptic functions. An expression for the half cycle duration as a function of the mean amplitude during the half cycle is derived in terms of complete elliptic integrals of the first kind. An approximate solution based on a direct linearization method is developed alongside this method, and excellent agreement is obtained between the results gained by this method and the exact results. © 1970 Academic Press Inc. (London) Limited.
Resumo:
This paper deals with the approximate solutions of non-linear autonomous systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on the ultraspherical polynomial expansions. The method is illustrated with examples and the results are compared with the digital and analog computer solutions. There is a close agreement between the analytical and exact results.
Resumo:
The problem of an elastic quarter-plane with arbitrary loadings on the boundaries has been solved using a Fourier-integral approach.
Resumo:
The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.