984 resultados para Lightweight aggregates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lightweight concrete has been the subject of several studies towards the development of new building materials. Emphasis has been given on the particle size effect and nature of aggregates used as raw materials. The present study includes an analysis of the materials that make this kind of concrete, analyzes of mechanical properties such as compressive and tensile strength, in addition to assessments of the interface concrete aggregate/matrix interface, porosity and absorption profile of chloride ions in lightweight concrete based on expanded clay. The experiments were carried out by molding cylindrical samples 100 mm in diameter and 200 mm in height. The dosage experiments were performed without additives or with the addition of minerals: (T1) 1: 2.01: 1.10: 0.78 (T2) 1: 2.00: 1.32 : 0.62 - (T3) 1 :1.93 :1.54: 0.47 (cement : sand : expanded clay 0500 : expanded clay 1506).The water to cement ratio was set to 0.43. Expanded clay minerals with different average particle sizes were used, i.e., 9.5 mm/0500 and 19 mm/1506. The larger aggregate was coated by a glassy layer, yielding lower water absorption characteristics to the concrete. The results showed that the use of light expanded clay aggregates is a technically interesting solution to the production of lightweight concrete for construction applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the physical characteristics of lightweight concrete produced using waste materials as coarse aggregate. The study was inspired by the author’s Peace Corps service in Kilwa, Tanzania. Coconut shell, sisal fiber, and PET plastic were chosen as the test waste products due to their abundance in the area. Two mixes were produced for each waste product and the mix proportions designed for resulting compressive strengths of 3000 and 5000 psi. The proportions were selected based on guidelines for lightweight concrete from the American Concrete Institute. In preparation for mixing, coconut shells were crushed into aggregate no larger than 3/4 inch, sisal fiber was cut into pieces no longer than 3/8 inch, and PET plastic was shredded into 1/4 inch-wide strips no longer than 6 inches. Replicate samples were mixed and then cured for 28 days before they were tested for compressive strength, unit weight, and absorption. The resulting data were compared to ASTM Standards for lightweight concrete masonry units to determine their adequacy. Based on these results, there is potential for coconut shell to be used as coarse aggregate in lightweight concrete. Sisal fiber was unsuccessful in producing the appropriate compressive strength. However, the reduction in spalling of the hardened concrete and the induction of air in the mixes incorporating sisal fiber suggests that it has the potential to improve other characteristics of lightweight concrete. Concrete mixes using PET plastic as aggregate resulted in adequate compressive strengths, but were too dense to be considered ‘lightweight’ concrete. With some adjustments to slightly decrease absorption and unit weight, the PET plastic concrete mixes could be classified as medium weight concrete and, therefore, achieve many of the same benefits as would be seen with lightweight concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to use Software Defined Radio (SDR) in the civilian mobile applications will make it possible for the next generation of mobile devices to handle multi-standard personal wireless devices and ubiquitous wireless devices. The original military standard created many beneficial characteristics for SDR, but resulted in a number of disadvantages as well. Many challenges in commercializing SDR are still the subject of interest in the software radio research community. Four main issues that have been already addressed are performance, size, weight, and power. This investigation presents an in-depth study of SDR inter-components communications in terms of total link delay related to the number of components and packet sizes in systems based on Software Communication Architecture (SCA). The study is based on the investigation of the controlled environment platform. Results suggest that the total link delay does not linearly increase with the number of components and the packet sizes. The closed form expression of the delay was modeled using a logistic function in terms of the number of components and packet sizes. The model performed well when the number of components was large. Based upon the mobility applications, energy consumption has become one of the most crucial limitations. SDR will not only provide flexibility of multi-protocol support, but this desirable feature will also bring a choice of mobile protocols. Having such a variety of choices available creates a problem in the selection of the most appropriate protocol to transmit. An investigation in a real-time algorithm to optimize energy efficiency was also performed. Communication energy models were used including switching estimation to develop a waveform selection algorithm. Simulations were performed to validate the concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a constant need to improve the infrastructure's quality and build new infrastructure with better designs. The risk of accidents and noise can be reduced by improving the surface properties of the pavement. The amount of raw material used in road construction is worrisome, as it is finite and due the waste produced. Environmentally-friendly roads construction, recycling might be the main way. Projects must be more environmentally-friendly, safer, and quieter. Is it possible to develop a safer, quieter and environmentally-friendly pavement surfaces? The hypothesis is: is it possible to create an Artificial Engineered Aggregate (AEA) using waste materials and providing it with a specific shape that can help to reduce the noise and increase the friction? The thesis presents the development of an AEA and its application as a partial replacement in microsurfacing samples. The 1st introduces the topic and provides the aim and objectives of the thesis. The 2nd chapter – presents a pavement solution to noise and friction review. The 3rd chapter - developing a mix design for a geopolymer mortar that used basalt powder. The 4th chapter is presented the physical-mechanical evaluation of the AEA. The 5th chapter evaluates the use of this aggregate in microsurfacing regarding the texture parameters. The 6th chapter, those parameter are used as an input to SPERoN® model, simulating their noise behavior of these solutions. The findings from this thesis are presented as partial conclusions in each chapter, to be closed in a final chapter. The main findings are: the DoE provided the tool to select the appropriate geopolymer mortar mix design; AEA had interesting results regarding the physical-mechanical tests; AEA in partial replacement of the natural aggregates in microsurfacing mixture proved feasible. The texture parameters and noise levels obtained in AEA samples demonstrate that it can serve as a HIFASP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodamine B (RB) has been successfully exploited in the synthesis of light harvesting systems, but since RB is prone to form dimers acting as quenchers for the fluorescence, high energy transfer efficiencies can be reached only when using bulky and hydrophobic counterions acting as spacers between RBs. In this PhD thesis, a multiscale theoretical study aimed at providing insights into the structural, photophysical and optical properties of RB and its aggregates is presented. At the macroscopic level (no atomistic details) a phenomenological model describing the fluorescence decay of RB networks in presence of both quenching from dimers and exciton-exciton annihiliation is presented and analysed, showing that the quenching from dimers affects the decay only at long times, a feature that can be exploited in global fitting analysis to determine relevant chemical and photophysical information. At the mesoscopic level (atomistic details but no electronic structure) the RB aggregation in water in presence of different counterions is studied with molecular dynamics (MD) simulations. A new force field has been parametrized for describing the RB flexibility and the RB-RB interaction driving the dimerization. Simulations correctly predict the RB/counterion aggregation only in presence of bulky and hydrophobic counterion and its ability to prevent the dimerization. Finally, at the microscopic level, DFT calculations are performed to demonstrate the spacing action of bulky counterions, but standard TDDFT calculations are showed to fail in correctly describing the excited states of RB and its dimers. Moreover, also standard procedures proposed in literature for obtaining ad hoc functionals are showed to not work properly. A detailed analysis on the effect of the exact exchange shows that its short-range contribution is the crucial quantity for ameliorating results, and a new functional containing a proper amount of such an exchange is proposed and successfully tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The project aims to gather an understanding of additive manufacturing and other manufacturing 4.0 techniques with an eyesight for industrialization. First the internal material anisotropy of elements created with the most economically feasible FEM technique was established. An understanding of the main drivers for variability for AM was portrayed, with the focus on achieving material internal isotropy. Subsequently, a technique for deposition parameter optimization was presented, further procedure testing was performed following other polymeric materials and composites. A replicability assessment by means of the use of technology 4.0 was proposed, and subsequent industry findings gathered the ultimate need of developing a process that demonstrate how to re-engineer designs in order to show the best results with AM processing. The latest study aims to apply the Industrial Design and Structure Method (IDES) and applying all the knowledge previously stacked into fully reengineer a product with focus of applying tools from 4.0 era, from product feasibility studies, until CAE – FEM analysis and CAM – DfAM. These results would help in making AM and FDM processes a viable option to be combined with composites technologies to achieve a reliable, cost-effective manufacturing method that could also be used for mass market, industry applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, an important world’s population growth forecast establish that an increase of 2 billion people is expected by 2050. (UN,2019). This increment of people worldwide involves more humans, as well as growth of the demand for the construction of new residential, institutional, industrial, and infrastructural areas, prompting to a higher consumption of natural resources as required for construction materials. In addition, an effect of this population growth is the production and accumulation of waste causing a serious environmental and economic issue around the world. As an alternative to just producing more waste at the final stage of a building, house, road, among other concrete-based structures, adequate techniques must be applied for recycling and reusing these potential materials. The main priority of the thesis is to foment and evaluate the sustainable construction work leading to environmental-friendly actions that promote the reuse and recycling of construction waste, focusing on the use of construction recycled construction materials as an alternative for sub-base and base of road structure application. This thesis is committed to the analysis of the several laboratory tests carried out for achieving the physical-mechanical properties of the studied materials (recycled concrete aggregates + reclaimed asphalt pavement (RCA+RAP) and stabilized crushed sleepers). All these tests have been carried out in the Laboratory of Roads from the University of Bologna and in the experimental site in CAR srl., at Imola. The results are reported in tables, graphs, and are discussed. The mechanical properties values obtained from the laboratory tests are analysed and compared with standard values declared in the Italian and European normative for roads construction and to the results obtained from in-situ tests in the experimentation field (CAR srl in Imola) with the same materials. This to analyse the performance of them under natural conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaze estimation has gained interest in recent years for being an important cue to obtain information about the internal cognitive state of humans. Regardless of whether it is the 3D gaze vector or the point of gaze (PoG), gaze estimation has been applied in various fields, such as: human robot interaction, augmented reality, medicine, aviation and automotive. In the latter field, as part of Advanced Driver-Assistance Systems (ADAS), it allows the development of cutting-edge systems capable of mitigating road accidents by monitoring driver distraction. Gaze estimation can be also used to enhance the driving experience, for instance, autonomous driving. It also can improve comfort with augmented reality components capable of being commanded by the driver's eyes. Although, several high-performance real-time inference works already exist, just a few are capable of working with only a RGB camera on computationally constrained devices, such as a microcontroller. This work aims to develop a low-cost, efficient and high-performance embedded system capable of estimating the driver's gaze using deep learning and a RGB camera. The proposed system has achieved near-SOTA performances with about 90% less memory footprint. The capabilities to generalize in unseen environments have been evaluated through a live demonstration, where high performance and near real-time inference were obtained using a webcam and a Raspberry Pi4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The micellization of a homologous series of zwitterionic surfactants, a group of sulfobetaines, was studied using isothermal titration calorimetry (ITC) in the temperature range from 15 to 65 °C. The increase in both temperature and the alkyl chain length leads to more negative values of ΔGmic(0) , favoring the micellization. The entropic term (ΔSmic(0)) is predominant at lower temperatures, and above ca. 55-65 °C, the enthalpic term (ΔHmic(0)) becomes prevalent, figuring a jointly driven process as the temperature increases. The interaction of these sulfobetaines with different polymers was also studied by ITC. Among the polymers studied, only two induced the formation of micellar aggregates at lower surfactant concentration: poly(acrylic acid), PAA, probably due to the formation of hydrogen bonds between the carboxylic group of the polymer and the sulfonate group of the surfactant, and poly(sodium 4-styrenesulfonate), PSS, probably due to the incorporation of the hydrophobic styrene group into the micelles. The prevalence of the hydrophobic and not the electrostatic contributions to the interaction between sulfobetaine and PSS was confirmed by an increased interaction enthalpy in the presence of electrolytes (NaCl) and by the observation of a significant temperature dependence, the latter consistent with the proposed removal of hydrophobic groups from water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ICAM-1 expression on the villous syncytiotrophoblast (ST) is believed to participate in migration of maternal cells into the inflamed villi regardless of villitis etiology. However, its expression on immune cells in chronic villitis (CV) has yet to be analyzed. ICAM-1 induces cell-cell adhesion allowing intercellular communication, T cell-mediated defense mechanism, and inflammatory response. 21 cases of CV (all without an identifiable etiologic agent) and 3 control placentas were analyzed using ICAM-1, and for immune cells CD45, CD3 and CD68. These cells were subdivided according to their location in inflamed villi: a) within the inflamed villi and b) outside forming perivillous aggregates. Large amounts of CD45, CD3 and CD68 were found within the inflamed villi and forming perivillous aggregates attached to areas of trophoblastic loss. Inflamed villi usually showed ICAM-1+ ST. The majority of immune cells surrounding areas of trophoblastic rupture presented marked expression of ICAM-1. In contrast, a small number of immune cells within the inflamed villi exhibited ICAM-1 expression. Only some (<5%) inflamed villi without trophoblastic rupture and with ICAM-1+ ST presented adherence of immune cells. In inflamed villi of chronic villitis, the level of ICAM-1 expression on immune cells depends on their location: high in number of cells in the perivillous region and low within the villi. The strongest expression of ICAM-1 on immune cells attached to areas of trophoblastic rupture suggests that the loss of trophoblast can lead to an amplification of the inflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.