995 resultados para Lightening schedule
Resumo:
Consider the problem of scheduling a set of sporadic tasks on a multiprocessor system to meet deadlines using a tasksplitting scheduling algorithm. Task-splitting (also called semipartitioning) scheduling algorithms assign most tasks to just one processor but a few tasks are assigned to two or more processors, and they are dispatched in a way that ensures that a task never executes on two or more processors simultaneously. A certain type of task-splitting algorithms, called slot-based task-splitting, is of particular interest because of its ability to schedule tasks at high processor utilizations. We present a new schedulability analysis for slot-based task-splitting scheduling algorithms that takes the overhead into account and also a new task assignment algorithm.
Resumo:
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.
Resumo:
It has been widely studied how to schedule real-time tasks on multiprocessor platforms. Several studies find optimal scheduling policies for implicit deadline task systems, but it is hard to understand how each policy utilizes the two important aspects of scheduling real-time tasks on multiprocessors:inter-job concurrency and job urgency. In this paper, we introduce a new scheduling policy that considers these two properties. We prove that the policy is optimal for the special case when the execution time of all tasks are equally one and deadlines are implicit, and observe that the policy is a new concept in that it is not an instance of Pfair or ERfair. It remains open to find a schedulability condition for general task systems under our scheduling policy.
Resumo:
This paper focuses on the scheduling of tasks with hard and soft real-time constraints in open and dynamic real-time systems. It starts by presenting a capacity sharing and stealing (CSS) strategy that supports the coexistence of guaranteed and non-guaranteed bandwidth servers to efficiently handle soft-tasks’ overloads by making additional capacity available from two sources: (i) reclaiming unused reserved capacity when jobs complete in less than their budgeted execution time and (ii) stealing reserved capacity from inactive non-isolated servers used to schedule best-effort jobs. CSS is then combined with the concept of bandwidth inheritance to efficiently exchange reserved bandwidth among sets of inter-dependent tasks which share resources and exhibit precedence constraints, assuming no previous information on critical sections and computation times is available. The proposed Capacity Exchange Protocol (CXP) has a better performance and a lower overhead when compared against other available solutions and introduces a novel approach to integrate precedence constraints among tasks of open real-time systems.
Resumo:
ARINC specification 653-2 describes the interface between application software and underlying middleware in a distributed real-time avionics system. The real-time workload in this system comprises of partitions, where each partition consists of one or more processes. Processes incur blocking and preemption overheads and can communicate with other processes in the system. In this work we develop compositional techniques for automated scheduling of such partitions and processes. At present, system designers manually schedule partitions based on interactions they have with the partition vendors. This approach is not only time consuming, but can also result in under utilization of resources. In contrast, the technique proposed in this paper is a principled approach for scheduling ARINC-653 partitions and therefore should facilitate system integration.
Resumo:
Consider the problem of scheduling a set of implicitdeadline sporadic tasks on a heterogeneous multiprocessor so as to meet all deadlines. Tasks cannot migrate and the platform is restricted in that each processor is either of type-1 or type-2 (with each task characterized by a different speed of execution upon each type of processor). We present an algorithm for this problem with a timecomplexity of O(n·m), where n is the number of tasks and m is the number of processors. It offers the guarantee that if a task set can be scheduled by any non-migrative algorithm to meet deadlines then our algorithm meets deadlines as well if given processors twice as fast. Although this result is proven for only a restricted heterogeneous multiprocessor, we consider it significant for being the first realtime scheduling algorithm to use a low-complexity binpacking approach to schedule tasks on a heterogeneous multiprocessor with provably good performance.
Resumo:
The advent of multicore systems has renewed the interest of research community on real-time scheduling on multiprocessor systems. Real-time scheduling theory for uniprocessors is considered a mature research field, but real-time scheduling theory for multiprocessors is an emerging research field. Being part of this research community I have decided to implement the Sporadic Multiprocessor Linux Scheduler that implements a new real-time scheduling algorithm, which was designed to schedule real-time sporadic tasks on multiprocessor systems. This technical reports describes the implementation of the SMLS.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics upon multiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-conserving scheduling algorithm that employs this policy. It then investigates the characteristics of LLF scheduling, which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test.
Resumo:
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate between processors. We propose an algorithm which can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm is given processors that are three times faster.
Resumo:
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate between processors. On each processor, tasks are scheduled according to rate-monotonic. We propose an algorithm that can schedule all task sets that any other possible algorithm can schedule assuming that our algorithm is given processors that are √2 / √2−1 ≈ 3.41 times faster. No such guarantees are previously known for partitioned static-priority scheduling on uniform multiprocessors.
Resumo:
This paper proposes a dynamic scheduler that supports the coexistence of guaranteed and non-guaranteed bandwidth servers to efficiently handle soft-tasks’ overloads by making additional capacity available from two sources: (i) residual capacity allocated but unused when jobs complete in less than their budgeted execution time; (ii) stealing capacity from inactive non-isolated servers used to schedule best-effort jobs. The effectiveness of the proposed approach in reducing the mean tardiness of periodic jobs is demonstrated through extensive simulations. The achieved results become even more significant when tasks’ computation times have a large variance.
Resumo:
A new algorithm is proposed for scheduling preemptible arbitrary-deadline sporadic task systems upon multiprocessor platforms, with interprocessor migration permitted. This algorithm is based on a task-splitting approach - while most tasks are entirely assigned to specific processors, a few tasks (fewer than the number of processors) may be split across two processors. This algorithm can be used for two distinct purposes: for actually scheduling specific sporadic task systems, and for feasibility analysis. Simulation- based evaluation indicates that this algorithm offers a significant improvement on the ability to schedule arbitrary- deadline sporadic task systems as compared to the contemporary state-of-art. With regard to feasibility analysis, the new algorithm is proved to offer superior performance guarantees in comparison to prior feasibility tests.
Resumo:
Mestrado em Ensino Precoce do Inglês
Resumo:
OBJECTIVE To analyze the regional governance of the health systemin relation to management strategies and disputes.METHODOLOGICAL PROCEDURES A qualitative study with health managers from 19 municipalities in the health region of Bahia, Northeastern Brazil. Data were drawn from 17 semi-structured interviews of state, regional, and municipal health policymakers and managers; a focus group; observations of the regional interagency committee; and documents in 2012. The political-institutional and the organizational components were analyzed in the light of dialectical hermeneutics.RESULTS The regional interagency committee is the chief regional governance strategy/component and functions as a strategic tool for strengthening governance. It brings together a diversity of members responsible for decision making in the healthcare territories, who need to negotiate the allocation of funding and the distribution of facilities for common use in the region. The high turnover of health secretaries, their lack of autonomy from the local executive decisions, inadequate technical training to exercise their function, and the influence of party politics on decision making stand as obstacles to the regional interagency committee’s permeability to social demands. Funding is insufficient to enable the fulfillment of the officially integrated agreed-upon program or to boost public supply by the system, requiring that public managers procure services from the private market at values higher than the national health service price schedule (Brazilian Unified Health System Table). The study determined that “facilitators” under contract to health departments accelerated access to specialized (diagnostic, therapeutic and/or surgical) services in other municipalities by direct payment to physicians for procedure costs already covered by the Brazilian Unified Health System.CONCLUSIONS The characteristics identified a regionalized system with a conflictive pattern of governance and intermediate institutionalism. The regional interagency committee’s managerial routine needs to incorporate more democratic devices for connecting with educational institutions, devices that are more permeable to social demands relating to regional policy making.
Resumo:
Cloud SLAs compensate customers with credits when average availability drops below certain levels. This is too inflexible because consumers lose non-measurable amounts of performance being only compensated later, in next charging cycles. We propose to schedule virtual machines (VMs), driven by range-based non-linear reductions of utility, different for classes of users and across different ranges of resource allocations: partial utility. This customer-defined metric, allows providers transferring resources between VMs in meaningful and economically efficient ways. We define a comprehensive cost model incorporating partial utility given by clients to a certain level of degradation, when VMs are allocated in overcommitted environments (Public, Private, Community Clouds). CloudSim was extended to support our scheduling model. Several simulation scenarios with synthetic and real workloads are presented, using datacenters with different dimensions regarding the number of servers and computational capacity. We show the partial utility-driven driven scheduling allows more VMs to be allocated. It brings benefits to providers, regarding revenue and resource utilization, allowing for more revenue per resource allocated and scaling well with the size of datacenters when comparing with an utility-oblivious redistribution of resources. Regarding clients, their workloads’ execution time is also improved, by incorporating an SLA-based redistribution of their VM’s computational power.