770 resultados para Ligas de aluminio - Fundição
Resumo:
Because of the great metallurgical advances, the welded tubes by HF / ERW (High Frequency / Electrical Resistance Welding) have played a more active role in the oil and gas, gradually replacing tubes produced by other processes (UOE, SAW, and others) to deep water applications, in high and extremely low temperatures, highpressure conditions and in highly corrosive environments. However, studies have revealed that defects in the welded joints are in one of main causes of failures in pipelines. Associated with damage external and the stringent requirements of this sector, the welded joints become particularly critical for his toughness and the determination of this particular property is fundamental. This study aims to evaluate the toughness of the HF / ERW pipes in HSLA steel API X70 class, used in pipelines transport systems of gas and oil from data obtained with CTOD tests (Crack Tip Opening Displacement). The main objectives of this project are: mechanical and microstructural characterization of steels API X70 manufactured in Brazil; and evaluation of the toughness of weld process by HF / ERW steel API X70 national. After having the tests done, mechanical, chemical and metallurgical, we have the conclusion that those pipe are in agreement to API 5L 42ª edition for X70MO and the toughness behaves like the expected
Resumo:
The nickel alloys have a chemical composition with high tenor of alloy elements which are responsible for the material's mechanical and thermal properties, but also are the main causative of problems during the machining, making the process difficult. The objective of this work is the study of the machining by external cylindrical turning of the nickel based alloy Nimonic 80A, seeking the machining optimization of this alloy, seeking the best condition of lubricant fluid use, providing real increases of productivity without the need of investments in new production means. Besides, the results of this work should offer more detailed information regarding the behavior of this alloy in relation to machining by turning. The machining experiences were accomplished in a specimen of the nickel alloy, considering the machining parameters: cutting speed (75 and 90 m/min), cutting depth (0,8 mm) and feed rate (0,15 and 0,18 mm/v). The valuations were accomplished in a CNC lathe and tools with of hard metal inserts. After each stage of the turning the measures of the cutting length were accomplished, of the waste of the tools through a magnifying glass (8x) and the roughness of the specimen evaluated in each phase of the process, with the aid of a portable roughness meter. Through light optical microscopy it was possible to observe the wear of the cutting tools for each appraised condition. The roughness values, Ra and Ry, for the appraised conditions were always superiors to the theoretical values. After analysis of the results it was possible to end that, the best acting for this work strip tested it was obtained for ap=0,8mm: f=0,15mm/rev and VC=75m/min, what resulted in a larger cutting length (1811 m)
Resumo:
The cylinder head contains the combustion chamber for the air-fuel mixture and the intake and exhaust valves, the valve guide and the valve seat. The cylinder head also is a support for the camshaft and valve rocker. The holes where the spark plugs are connected are designed to fit the better place in the combustion chamber. The cylinder heads often are manufactured using materials such as aluminum and cast iron. The cooling fins located in the outside of the cylinder head are designed for a good heat transfer and therefore their dimensions and positioning are important. This work aims the calculation for a cylinder head to be installed in a 400 cc displacement, gasoline powered, four stroke, single cylinder engine. According to the displacement it will be analyzed the combustion chamber, the intake and exhaust valves, as well as the camshaft and rocker arms. This also a work to help to accomplish the design of a single cylinder engine, where the alternatives parts, cylinder block and crankcase are all already machined and assembled in this campus
Resumo:
The search for materials with higher properties and characteristics (wear resistance, oxidation, corrosion, etc.) has driven research of various materials. Among the materials that are being studied with such properties and characteristics are super alloys based on nickel which has an important role in the aeronautical, automotive, marine, production of gas turbines and now in space vehicles, rocket engineering , experimental aircraft, nuclear reactors, steam-powered plants, petrochemical and many other applications because besides having all the characteristics and properties mentioned above also have an excellent performance at high temperatures. The super alloy based on nickel studied in this work is the super alloy Pyromet 31v normally used in the manufacture of exhaust valves in common engines and diesel engines of high power by cater requirements such as mechanical strength and corrosion resistance at temperatures of approximately 815 ° C. The objective of this work is to produce results to demonstrate more specific information about the real influence of coatings on cutting tools and cutting fluids in turning and thus promote the optimization of the machining of these alloys. The super alloy Pyromet 31v was processed through turning, being performed with various machining parameters such as cutting speed, feed rate, depth in conditions of Minimum Amount of Fluid (MAF), abundant fluid, cutting tools with coating and without coating in early in his work life and with wear. After turning were obtained several samples of chips and the part generated during the machining process, was measured roughness of the material, subsequently made macrostructural analysis of the tools used order to detect possible wear and microstructural analysis of samples collected being that the latter was used for Optical Microscopy, Scanning Electron Microscopy (SEM) and ... (Complete abstract click electronic access below)
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint
Resumo:
The struggle for land is not a recent theme in Brazilian history. Since colonization, people have fought and resisted against oppression and injustice in the countryside, as can be evidenced by the highwaymen, peasant leagues and the war of Canudos. More recently, the struggle for land and agrarian reform can be evidenced by the struggles of the MST, CONTAG, CPT and other movements. For these movements, denominated as socioterritorial movements, land/territory is an essential condition for their existence and for the maintenance of their territoriality. The present paper examines the geography of socioterritorial moviments: the construction of the concept of socioterritorial movements and their forms of action and scales of actuation in the period 2000 to 2012, focusing on the movements that have been most active. These movements are studied through as analysis of data of the Land Struggle Data Base (Banco de Dados da Luta pela Terra –DATALUTA), print and digital media reports and a bibliographic survey of the literature. The action of socioterritorial movements can be studied through the forms of land occupations and demonstrations in the countryside which are the principal means of the struggle against large landholders, agribusiness and the State. These actions question the model of development which privileges agribusiness and, as such, are viewed by some as a hindrance to the development of the country. Over the years, the number of socioterritorial moviments, and their actions have oscillated due to a series of factors, such as repression (criminalization of members and violence against them), policies adopted by Brazilian governments and the contradictions inherent in very process of the spacialization of the struggle for land. These actions can be analyzed according to the scale of the struggle of the movements – municipal, micro-regional, state, macro-regional, and national
Resumo:
In view of the need to develop a device for security and lateral protection, due to the Resolution 323/09 of CONTRAN, which requires the use of such equipment for most trucks and tow trucks, the objective of this work is to develop a project for an aluminum lateral protection device, according to the ABNT NBR 14.148 regulation, that, among many specifications, stipulates that the equipment must support a load of 5 kN and suffer a maximum deflection of 30mm, but does not say what material it should be made of. The reason for choosing aluminum is because of its low density, so as not to significantly increase the curb weight of the truck, which, consequently, reduces CO2 emissions and maintenance expenses. Additionally, this material presents a good resistance/weight ratio, high resistance to corrosion, excellent surface finish and it's fully recyclable; reason why it has been gaining the attention of many industry segments. For the realization of the project, profiles were chosen to make the assembly of the set, and then a finite elements analysis was performed in the HyperWorks software, to verify if the designed device would support the loads stipulated by the regulation. One details to note is that these simulation programs could show inaccuracies, because of the size and shape of the elements that compose the mesh, and for many other reasons, so it is necessary that, even with the results coming back satisfactory, actual physical tests are conducted to validate the proper functioning of the equipment, which was not done for this study
Resumo:
O alumínio está presente de forma marcante em nosso cotidiano, com várias possibilidades de contaminação para o ser humano e animais, através da ingestão de alimentos ou aditivos presentes nos alimentos ou, também, através do uso de medicamentos. Por apresentar uma forte carga elétrica, um forte poder de polarização e características similares com elementos da hidroxiapatita, o alumínio age como um competidor de nutrientes na matriz óssea, Por isso, ele pode ser causa danos à saúde dos seres vivos, como a osteoporose. Diante disso, a presente pesquisa teve como objetivos estudar a influência de diferentes níveis de alumínio na dieta de codornas poedeiras, sobre as características físicas e químicas de seus ossos. A densidade e a porosidade óssea foram determinadas pelo método de imersão em água, utilizando o princípio de Arquimedes. Os resultados obtidos mostraram que concetrações até 20 mg de alumínio por kg de ração fornecida causa uma diminuição na densidade óssea e volta a aumentar para concetrações maiores que este limiar. A porosidade óssea, segue o inverso da densidade. Ela aumenta com concetrações até 20 mg de alumínio por kg de ração fornecida e volta a diminuir para concetrações menores
Resumo:
The industry produces rolled, starting to and passing through casting forming processes, for example, in the case in question the rolling. A large portion of rolled products are flat, these have specific characteristics during their production and properties after finished that must be analyzed. For this a study of these properties must be made in materials samples, in order to be able to first know the material in question or provide new properties to the material through the process of rolling flat products. In this way is interesting that the students of mechanical engineering have knowledge of rolling trials, and from this can better understand the behavior of rolled. With this purpose the project of a benchtop rolling mill for the rolling of flat is needed, this work is the project of a sizing of one rolling mill non-ferrous materials
Resumo:
This study aims to determine the most suitable type of heat exchanger to be applied to the water cooling the mold of a continuous casting process. Basically been studied four types of heat exchangers: shell and tube operating in counterflow, shell and tube operating in parallel flow, plate type and operating counterflow and plates operating in parallel flow. Initially is displayed design of heat exchangers for the conditions of the proposed application. With the heat exchangers dimensioned comparisons were made in order to set the heat exchanger more suitable for application. In the study, one comes to the conclusion that the plate type heat exchangers operating shows counterflow major advantage for this application
Resumo:
Titanium and its alloys have been used for biomedical applications due their excellent properties such as high corrosion resistance, biocompatibility and mechanical properites. In this study, microstructural and mechanical properties of Ti-30Ta alloy was evaluated during its processing. Ti-30Ta alloy ingots were produced from sheets of commercially pure titanium (99.9%) and tantalum (99.9%). Its melting was realized in arc melting furnace in an argon atmosphere. After homogenizing at 1200ºC, ingots were cold worked by swaging. Samples with 13 mm in diameter were obtained. They were forging at the reduction ratios of 15%. After deformation, microstructure was evaluated by optical microscopy in each condition. Also, Vickers microhardness of samples was measured and phase constitution was evaluated using XRD analysis
Resumo:
O sucesso de uma espécie em um hábitat é dependente de seu desempenho ecofisiológico, que pode ser definido com variáveis de crescimento, que, por sua vez, pode relacionar-se aos recursos naturais disponíveis. Um dos fatores determinantes da ocorrência de espécies é o fator edáfico. A baixa fertilidade do solo das fisionomias do Cerrado são semelhantes, mostrando altos teores de alumínio (Al3+) e baixo pH. Contudo, solos de matas de brejo, onde Styrax pohlii é freqüente, apresentam teores levemente maiores de matéria orgânica. Logo, é possível que esta maior fertilidade do solo possa influenciar o crescimento de S. pohlii, podendo explicar sua maior ocorrência nestes hábitats. Objetivou-se medir a biomassa de órgãos, área foliar, número de folhas, área foliar específica, razão de massa de folhas e a razão de área foliar de plantas de S. pohlii, submetidas a diferentes cargas de nutrientes em cultivo hidropônico. Testou-se a hipótese de que diferentes cargas de nutrientes (100%, 50%, 25%, 10% e 1% da concentração total de uma solução nutritiva) alteram as variáveis de crescimento da espécie. As plantas foram cultivadas em caixas plásticas (20 L), contendo as diferentes cargas de nutrientes, em solução nutritiva com alumínio (Al3+) e pH 4,0. Utilizaram-se 20 parcelas (caixas plásticas) com cinco repetições (plantas) por parcela, perfazendo um total de 100 plantas. Realizaram-se quatro coletas (a cada 30 dias), onde as variáveis foram medidas. Os resultados mostraram que a espécie não respondeu a incrementos de nutrientes na solução nutritiva, podendo ela ser considerada não plástica a fatores edáficos. Considerando a grande ocorrência de indivíduos de S. pohlii em matas ripárias, ciliares e de brejo, os resultados sugerem que a fertilidade levemente maior nesses ambientes, dada pela elevação da matéria orgânica, não explica totalmente sua maior ocorrência nessas vegetações
Resumo:
The volume of liquid effluent generated in cattle slaughterhouses is quite high and cannot be released untreated in water bodies due to its high pollution load of predominantly organic origin. To minimize the environmental impacts of its industrial wastewater and meet the local environmental legislation, abattoirs shall make the treatment of these effluents. The present work aims to develop the study of a reactor by sequential batch pilot scale, in order to optimize their performance in treating wastewater from a cattle slaughterhouse. The treatment system used was developed and installed in the Laboratory of Wastewater Treatment, in Faculty of Science and Technology UNESP, Presidente Prudente campus. The procedure used followed the operation of sequential batch reactors, in which all processes and treatment operations occurring sequentially in a single unit, by establishing specific operating cycles, which comprise the following separated phases: aerobic reaction, anoxic reaction, sedimentation and emptying. Aiming to improve the quality of treatment was planned the addition of coagulant Poly Aluminum Chloride (PAC) in the reactor, by determining their optimal dosage by Jar-test trials. Were prepared four steps with specific operating cycles: step one or acclimatization (10 hour of aeration, one hour and 30 minutes of sedimentation and 30 minutes for exchanging the effluent); step 2 (6 hours of aeration or aerobic phase, 4 hours and 45 minutes of stirring or anoxic phase and 1 hour and 15 minutes for sedimentation and exchange effluent); step 3 (2 hours and 30 minutes of aeration, 8 hours and 15 minutes of stirring and 1 hour and 15 minutes for sedimentation and exchange) and step 4 (2 hours of aeration, 8 hours and 45 minutes of stirring and 1 hour and 15 minutes for sedimentation and exchange)... (Complete abstract click electronic access below)
Resumo:
The welding process in industrial piping is still the most effective way to ensure the durability and quality of the wide range of industrial process, although because of the high demand for energy and quality of the produced products, the piping has been constantly tested for high pressure applications and still high temperature. The welding method analyzed is the TIG (Tungsten Inert Gas) welding or GTAW (Gas-Shielded Tungsten Arc Welding), which ones have as principal feature the utilization of a not consumable tungsten electrode in the torch extremity , in this process is necessary a protective atmosphere of inert gas. The welding TIG advantage is the obtaining of a welded seam clean and with quality for not has slag after the welding. This work has as objective show the variability in the carbon steel piping welding parameters and by the tests in four proof bodies will be shown the influence of the variation of the welding methods in a welded seam. The tests will vary since the piece to be welded preparation, till penetrating liquid tests, welding macrography, welding x-ray and traction tests. Even been a clean and with quality welding is necessary a final inspection in the seam welded looking for defects almost inevitable resulted of the welded process, the obtained results have the objective of indicate and minimize the defects to ensure quality and durability of the welded seam
Resumo:
This work examines the possible effects of successive repair procedures on the microstructure of welded steel SAE 4130 by TIG welding process. Discussions and results were made about the metallographic analysis , non-metallic inclusions and microhardness tests , which were conducted on samples taken from the cradle engine component after the end of its life , a model airplane T-27 Tucano , made by EMBRAER and belonging were performed FAB . The choice of such component is due to the fact that this is critical to flight safety since it provides support for the aircraft engine . Thus regions of the weld metal , base metal and heat affected , with samples of the original weld bead , free of weld bead and also with four rework procedures for TIG welding zone were analyzed . It was found that after the fourth rework there is an increase in the amount of martensite , which may weaken the material with respect to resistance to fatigue. It was also found that the regions of the heat affected zone and weld metal have higher microhardness values when compared to those found in the base metal due to favoring the formation of ferritic and tempered martensite microstructures . Moreover, a welding process promotes a region with less non-metallic inclusions than metal base , which also explains the difference in the results obtained