946 resultados para Lexington, Battle of, Lexington, Mass., 1775.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
A later edition, abridged, was published under title: Gettysburg; where and how the regiments fought.
Resumo:
"This group report is based on an article submitted to the Physical review."
Resumo:
Mode of access: Internet.
Resumo:
Vols. II-III have imprint: Published by Charles Ewer, Boston; and William B. Allen & co., Newburyport, Ms. 1817. Wm. B. Allen & co. prnters: vol. IV-V: Published by Charles Ewer, Boston; and E. W. Allen, Newburyport, Mass. 1817. E. W. Allen printer (vol. V. omits "Mass")
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Accurate estimates of body mass in fossil taxa are fundamental to paleobiological reconstruction. Predictive equations derived from correlation with craniodental and body mass data in extant taxa are the most commonly used, but they can be unreliable for species whose morphology departs widely from that of living relatives. Estimates based on proximal limb-bone circumference data are more accurate but are inapplicable where postcranial remains are unknown. In this study we assess the efficacy of predicting body mass in Australian fossil marsupials by using an alternative correlate, endocranial volume. Body mass estimates for a species with highly unusual craniodental anatomy, the Pleistocene marsupial lion (Thylacoleo carnifex), fall within the range determined on the basis of proximal limb-bone circumference data, whereas estimates based on dental data are highly dubious. For all marsupial taxa considered, allometric relationships have small confidence intervals, and percent prediction errors are comparable to those of the best predictors using craniodental data. Although application is limited in some respects, this method may provide a useful means of estimating body mass for species with atypical craniodental or postcranial morphologies and taxa unrepresented by postcranial remains. A trend toward increased encephalization may constrain the method's predictive power with respect to many, but not all, placental clades.
Resumo:
Purpose: Although the body-mass management strategies of athletes in high-participation weight-category sports such as wrestling have been thoroughly investigated, little is known about such practices among lightweight rowers. This study examined the body-mass management practices of lightweight rowers before competition and compared these with current guidelines of the International Federation of Rowing Association (FISA). Quantification of nutrient intake in the 1-2 h between weigh-in and racing was also sought. Methods: Lightweight rowers (N = 100) competing in a national regatta completed a questionnaire that assessed body-mass management practices during the 4 wk before and throughout a regatta plus recovery strategies after weigh-in. Biochemical data were collected immediately after weigh-in to validate questionnaire responses. Responses were categorized according to gender and age category (Senior B or younger than 23 yr old, i.e., U23, Senior A or OPEN, i.e., open age limit) for competition. Results: Most athletes (male U23 76.5%, OPEN 92.3%; female U23 84.0%, OPEN 94.1%) decreased their body mass in the weeks before the regatta at rates compliant with FISA guidelines. Gradual dieting, fluid restriction, and increased training load were the most popular methods of body-mass management. Although the importance of recovery after weigh-in was recognized by athletes, nutrient intake and especially sodium (male U23 5.3 ± 4.9, OPEN 7.7 ± 5.9; female U23 5.7 ± 6.8, OPEN 10.2 ± 5.4 mg-kg(-1)) and fluid intake (male U23 12.1 ± 7.1, OPEN 13.5 ± 8.1; female U23 9.4 ± 7.4, OPEN 14.8 ± 6.9 mL.kg(-1)) were below current sports nutrition recommendations. Conclusion: Few rowers were natural lightweights; the majority reduced their body mass in the weeks before a regatta. Nutritional recovery strategies implemented by lightweight rowers after weigh-in were not consistent with current guidelines.
Resumo:
Objective: To demonstrate the utility of a practical measure of lean mass for monitoring changes in the body composition of athletes. Methods: Between 1999 and 2003 body mass and sum of seven skinfolds were recorded for 40 forwards and 32 backs from one Super 12 rugby union franchise. Players were assessed on 13 (7) occasions ( mean (SD)) over 1.9 (1.3) years. Mixed modelling of log transformed variables provided a lean mass index (LMI) of the form mass/skinfolds(x), for monitoring changes in mass controlled for changes in skinfold thickness. Mean effects of phase of season and time in programme were modelled as percentage changes. Effects were standardised for interpretation of magnitudes. Results: The exponent x was 0.13 for forwards and 0.14 for backs ( 90% confidence limits +/- 0.03). The forwards had a small decrease in skinfolds ( 5.3%, 90% confidence limits +/- 2.2%) between preseason and competition phases, and a small increase ( 7.8%, 90% confidence limits +/- 3.1%) during the club season. A small decrease in LMI (similar to 1.5%) occurred after one year in the programme for forwards and backs, whereas increases in skinfolds for forwards became substantial (4.3%, 90% confidence limits +/- 2.2%) after three years. Individual variation in body composition was small within a season (within subject SD: body mass, 1.6%; skinfolds, 6.8%; LMI, 1.1%) and somewhat greater for body mass (2.1%) and LMI (1.7%) between seasons. Conclusions: Despite a lack of substantial mean changes, there was substantial individual variation in lean mass within and between seasons. An index of lean mass based
Resumo:
In inflammatory diseases, release of oxidants leads to oxidative damage to biomolecules. HOCl (hypochlorous acid), released by the myeloperoxidase/H2O2/Cl- system, can cause formation of phospholipid chlorohydrins, or alpha-chloro-fatty aldehydes from plasmalogens. It can attack several amino acid residues in proteins, causing post-translational oxidative modifications of proteins, but the formation of 3-chlorotyrosine is one of the most stable markers of HOCl-induced damage. Soft-ionization MS has proved invaluable for detecting the occurrence of oxidative modifications to both phospholipids and proteins, and characterizing the products generated by HOCl-induced attack. For both phospholipids and proteins, the application of advanced mass spectrometric methods such as product or precursor ion scanning and neutral loss analysis can yield information both about the specific nature of the oxidative modification and the biomolecule modified. The ideal is to be able to apply these methods to complex biological or clinical samples, to determine the site-specific modifications of particular cellular components. This is important for understanding disease mechanisms and offers potential for development of novel biomarkers of inflammatory diseases. In the present paper, we review some of the progress that has been made towards this goal.