995 resultados para Lateral bipolar junction transistors
Resumo:
Stress/recovery measurements demonstrate that even high-performance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias.
Resumo:
BACKGROUND: Individuals with osteoporosis are predisposed to hip fracture during trips, stumbles or falls, but half of all hip fractures occur in those without generalised osteoporosis. By analysing ordinary clinical CT scans using a novel cortical thickness mapping technique, we discovered patches of markedly thinner bone at fracture-prone regions in the femurs of women with acute hip fracture compared with controls. METHODS: We analysed CT scans from 75 female volunteers with acute fracture and 75 age- and sex-matched controls. We classified the fracture location as femoral neck or trochanteric before creating bone thickness maps of the outer 'cortical' shell of the intact contra-lateral hip. After registration of each bone to an average femur shape and statistical parametric mapping, we were able to visualise and quantify statistically significant foci of thinner cortical bone associated with each fracture type, assuming good symmetry of bone structure between the intact and fractured hip. The technique allowed us to pinpoint systematic differences and display the results on a 3D average femur shape model. FINDINGS: The cortex was generally thinner in femoral neck fracture cases than controls. More striking were several discrete patches of statistically significant thinner bone of up to 30%, which coincided with common sites of fracture initiation (femoral neck or trochanteric). INTERPRETATION: Femoral neck fracture patients had a thumbnail-sized patch of focal osteoporosis at the upper head-neck junction. This region coincided with a weak part of the femur, prone to both spontaneous 'tensile' fractures of the femoral neck, and as a site of crack initiation when falling sideways. Current hip fracture prevention strategies are based on case finding: they involve clinical risk factor estimation to determine the need for single-plane bone density measurement within a standard region of interest (ROI) of the femoral neck. The precise sites of focal osteoporosis that we have identified are overlooked by current 2D bone densitometry methods.
Resumo:
A temperature-dependent mobility model in amorphous oxide semiconductor (AOS) thin film transistors (TFTs) extracted from measurements of source-drain terminal currents at different gate voltages and temperatures is presented. At low gate voltages, trap-limited conduction prevails for a broad range of temperatures, whereas variable range hopping becomes dominant at lower temperatures. At high gate voltages and for all temperatures, percolation conduction comes into the picture. In all cases, the temperature-dependent mobility model obeys a universal power law as a function of gate voltage. © 2011 IEEE.
Resumo:
Stress/recovery measurements demonstrate that even highperformance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias. © 2011 SID.
Resumo:
In this paper we propose novel designs that enhance the plasma concentration across the Field Stop IGBT. The "p-ring" and the "point-injection" type devices exhibit increased cathode side conductivity modulation which results in impressive IGBT performance improvement. These designs are shown to be extremely effective in lowering the on-state losses without compromising the switching performance or the breakdown rating. For the same switching losses we can achieve more than 20% reduction of the on state energy losses compared to the conventional FS IGBT. © 2012 IEEE.
Resumo:
In this letter, we report E off-versus-V ce tradeoff curves for vertical superjunction insulated-gate bipolar transistors (SJ IGBTs), exhibiting unusual inverse slopes dE off/dV ce > 0 in a transition region between purely unipolar and strongly bipolar device behaviors. This effect is due to the action of p-pillar hole current when depleting the drift layer of SJ IGBTs during turnoff and the impact of current gain on the transconductance. Such SJ IGBTs surpass by a very significant margin their superjunction MOSFET counterparts in terms of power-handling capability and on-state and turnoff losses, all at the same time. © 2012 IEEE.
Resumo:
The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.
Resumo:
The Lateral Leg Spring model (LLS) was developed by Schmitt and Holmes to model the horizontal-plane dynamics of a running cockroach. The model captures several salient features of real insect locomotion, and demonstrates that horizontal plane locomotion can be passively stabilized by a well-tuned mechanical system, thus requiring minimal neural reflexes. We propose two enhancements to the LLS model. First, we derive the dynamical equations for a more flexible placement of the center of pressure (COP), which enables the model to capture the phase relationship between the body orientation and center-of-mass (COM) heading in a simpler manner than previously possible. Second, we propose a reduced LLS "plant model" and biologically inspired control law that enables the model to follow along a virtual wall, much like antenna-based wall following in cockroaches. © 2006 Springer.
Resumo:
This paper presents the use of an Active Voltage Control (AVC) technique for balancing the voltages in a series connection of Insulated Gate Bipolar Transistors (IGBTs). The AVC technique can control the switching trajectory of an IGBT according to a pre-set reference signal. In series connections, every series connected IGBT follows the reference and so that the dynamic voltage sharing is achieved. For the static voltage balancing, a temporary clamp technique is introduced. The temporary clamp technique clamps the collector-emitter voltage of all the series connected IGBTs at the ideal voltage so that the IGBTs will share the voltage evenly. © 2012 IEEE.
Resumo:
This paper presents a comparison between the superjunction LIGBT and the LDMOSFET in partial silicon-on-insulator (PSOI) technology in 0.18μm PSOI HV process. The superjunction drift region helps in achieving uniform electric field distribution in both structures but also contributes to the on-state current in the LIGBT. The superjunction LIGBT successfully achieves breakdown voltage (BV) of 210V with Rdson of 765mΩ.mm2. It exhibits reduced specific on-state resistance Rdson and higher saturation current (Idsat) for the same BV compared to a compatible lateral superjunction LDMOS in the same technology. © 2012 IEEE.