881 resultados para LIPID RAFTS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Lys49-Phospholipase A(2) (Lys49-PLA(2) - EC 3.1.1.4) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. Both MjTX-II from Bothrops moojeni and BthTX-I from Bothrops jararacussu are dimeric in solution and in the crystalline states, and a model for the Ca2+-independent membrane damaging mechanism has been suggested in which flexibility at the dimer interface region pert-nits quaternary structural transitions between open and closed membrane bound dimer conformations which results in the perturbation of membrane phospholipids and disruption of the bilayer structure [1]. With the aim of gaining insights into the structural determinants involved in protein/lipid association, we report here the crystallization and preliminary X-ray analysis of the (i) MjTX-II/SDS complex at a resolution of 2.78Angstrom, (ii) MjTX-II/STE complex at a resolution of 1.8 Angstrom and (W) BthTX-I/DMPC complex at 2.72Angstrom. These complexes were crystallized by the hanging drop vapour-diffusion technique in (i) HEPES buffer (pH 7.5) 1.8M ammonium sulfate with 2% (w/v) polyethyleneglycol 400, in (ii) 0.6-0.8 M sodium citrate as the precipitant (pH 6.0-6.5) and in (iii) sodium citrate buffer (pH 5.8) and PEG 4000 and 20% isopropanol, respectively. Single crystals of these complexes have been obtained and X-ray diffraction data have been collected at room temperature using a R-AXIS IV imaging plate system and graphite monochromated Cu Kalpha X-ray radiation generated by a Rigaku RU300 rotating anode generator for (i) and (W) and using using a Synchrotron Radiation Source (Laboratorio Nacional de Luz Sincrotron, LNLS, Campinas, Brazil) for (ii).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
Resumo:
Water temperature alterations can determine harmful physiological modifications in fish, which should be prepared to cope with this, and nutrition strategies seem to be essential. This study evaluated the effects of different levels of vitamin C and lipids on physiological responses of Nile tilapia, Oreochromis niloticus, submitted to temperature stress. There were two phases: Phase I - preparing fish to store vitamin C and lipid at appropriate temperature, and Phase II - evaluating the contributions these reserves make to fish physiology under low-temperature stress. The experiment used a 3 x 2 factorial design with three vitamin C levels (300, 600, and 1200 mg/kg diet) and two lipid levels (8.0 and 12.0%), plus absence of nutrient test and a diet of 6.0% lipids and 125.0 mg/kg vitamin C. In Phase I, 192 fish were kept at 26.0 +/- 1.0 C for 112 d, and in Phase II, 48 fish were kept at 18.0 +/- 0.5 C for 32 d and at 15.0 +/- 0.5 C for 11 d. Fish fed C0L0 diet showed lower erythrocytes values in both phases; higher vitamin C supplement determined higher red blood cell (RBC) number and higher hematocrit (Htc) (Phase II); Htc was significantly lower in Phase II; after temperature stress, fish fed C0L0 diet had higher mean corpuscular volume, lower hemoglobin corpuscular concentration, and significantly lower vitamin C concentration in the liver; and higher supplementation determined a higher concentration in the liver (Phases I and II). Higher plasmatic cortisol concentration was seen in fish fed C0L0 diet. In conclusion, our results show that the absence of vitamin C in diets impairs RBC formation and does not enable fish to cope with stress; excess vitamin C is efficient in mitigating stress and 600 mg/kg diet is economic and physiologically sufficient to prepare fish for coping with low-temperature stress. Lipid supplementation does not determine alterations in stress biochemical parameters.
Resumo:
Corneal degeneration may occur with a deposition of lipids or calcium, or both. Calcareous and lipid degeneration may be either primary or secondary, associated with systemic diseases such as primary hyperlipidemia, hyperlipidemia associated with hyperadrenocorticism, and hypothyroidism. The authors report a case of bilateral corneal lipid and calcium degeneration in a 7-year-old female Poodle with hyperadrenocorticism. The condition worsened with Lysodren(R) therapy but responded to surgical excision.
Resumo:
Background: Exercise has been prescribed in the treatment and control of dyslipidemias and cholesterolemia, however, lipid responses to different training frequencies in hypercholesterolemic men have been inconsistent. We sought to verify if different frequencies of continuous moderate exercise (2 or 5 days/week, swimming) can, after 8 weeks, promote adaptations in adipocyte area and lipid parameters, as well as body weight and relative weight of tissues in normo and hypercholesterolemic adult male rats.Methods: Normal cholesterol chow diet or cholesterol-rich diet (1% cholesterol plus 0.25% cholic acid) were freely given during 8 weeks to the rats divided in 6 experimentals groups: sedentary normal cholesterol chow diet (C); sedentary cholesterol-rich diet (H); 5x per week continuous training normal cholesterol chow diet (TC5) and cholesterol-rich diet (TH5); 2x per week continuos traning normal cholesterol chow diet (TC2) and cholesterol-rich diet (TH2).Results: No changes were observed in lipid profile in normal cholesterol chow diet, but both 2 a 5 days/week exercise improved this profile in cholesterol-rich diet. Body weight gain was lower in exercised rats. Decrease in retroperitoneal and epididymal relative weights as well as reductions in adipocyte areas under all diets types were observed only in 5 days/week, while 2 days/week showed improvements mainly in cholesterol-rich diet rats.Conclusion: Our results confirm the importance of exercise protocols to control dyslipidemias and obesity in rats. The effects of 5 days/week exercise were more pronounced compared with those of 2 consecutive days/week training.
Resumo:
The aim of this study was to investigate the effects of training programs on serum lipid profile and myocardial oxidative stress. Male Wistar rats (2 mo-old) were divided into three groups (n=8): sedentary (S), loadless trained (T) and trained-overload 2% body weight (TL). T and TL were trained through swimming for 9 weeks. T and TL rats had increased myocardial lipoperoxide (TBA) and lipid hydroperoxide (HP), whereas HP was higher in TL than in T animals. Superoxide dismutase (SOD) activities were lowest in TL. Myocardial glutathione peroxidase (GSH-Px) was lower in TL than in T and S rats. TL decreased HDL-cholesterol and increased LDL-cholesterol. The serum lactate dehydrogenase and TBA were increased, while SOD and GSH-Px activities were decreased in TL rats. Loadless training was able to improve HDL-cholesterol and to reduce LDL-cholesterol. In conclusion, the loadless training program induced beneficial effects on lipid profile, while overload training induced dyslipidemic profile that was associated with serum oxidative stress. The overload training program was deleterious relative to loadless training program, increasing myocardial oxidative stress.