840 resultados para LCA, life cycle assessment, LCC, life cycle cost
Resumo:
This thesis entitled Systematics,life history traits ,abundance and stock assessment of cobia rachycentron canadum (linnaeus ,1766) occurring in indian waters with special reference to the northwest coast of india.Cobia, Rachycentron canadum is a fast growing pelagic fish belonging to the monotypic family Rachycentridae. They show worldwide distribution in tropical and sub tropical waters. Cobia is exploited commercially in various countries like Taiwan, Pakistan, India, United State of America, Australia, Gulf of Mexico and the Caribbean. Recreational fishery of Cobia exists in different parts of the world. In India Cobia is caught as bycatch of trawlers, gillnet and hook and line fishery.This study also focuses on to bring out the distribution pattern and also to assess the biomass and estimate sustainable yield of Cobia inhabiting in Indian EEZ. In addition to above, present study standardised live collection methods and also reviewed culture prospects.Results of osteological study and morphological studies indicate its close resemblance to Remora and support the view that Cobia was evolved from Dolphin fishes and remoras followed it. Study also confirmed that Cobia does not have any relative or similar species and is a monotypic species belonging to the family Rachycentridae. Re description of the species was done based on the characters identified. In this study, feeding intensity was also assessed following methods like Gastrosomatic index, Mean index of feeding intensity and Index of fullness. Sex wise, month wise and length group wise fluctuations in the feeding intensity also were studied. Cobia actively fed during post monsoon period. In general, adult fed actively than the juveniles. Trophic level value estimated (4.36) indicates that Cobia occupy top level position in the food chain.
Resumo:
Corrosion represents one of the largest through life cost component of ships. Ship owners and operators recognize that combating corrosion significantly impacts the vessels’ reliability, availability and through life costs. Primary objective of this paper is to review various inspections, monitoring systems and life cycle management with respect to corrosion control of ships and to develop the concept of “Corrosion Health” (CH) which would quantify the extent of corrosion at any point of ships’ operational life. A system approach in which the ship structure is considered as a corrosion system and divided into several corrosion zones, with distinct characteristics, is presented. Various corrosion assessment criteria for assessment of corrosion condition are listed. A CH rating system for representation of complex corrosion condition with a numeric number along with recommendations for repair/maintenance action is also discussed
Resumo:
Los resultados financieros de las organizaciones son objeto de estudio y análisis permanente, predecir sus comportamientos es una tarea permanente de empresarios, inversionistas, analistas y académicos. En el presente trabajo se explora el impacto del tamaño de los activos (valor total de los activos) en la cuenta de resultados operativos y netos, analizando inicialmente la relación entre dichas variables con indicadores tradicionales del análisis financiero como es el caso de la rentabilidad operativa y neta y con elementos de estadística descriptiva que permiten calificar los datos utilizados como lineales o no lineales. Descubriendo posteriormente que los resultados financieros de las empresas vigiladas por la Superintendencia de Sociedades para el año 2012, tienen un comportamiento no lineal, de esta manera se procede a analizar la relación de los activos y los resultados con la utilización de espacios de fase y análisis de recurrencia, herramientas útiles para sistemas caóticos y complejos. Para el desarrollo de la investigación y la revisión de la relación entre las variables de activos y resultados financieros se tomó como fuente de información los reportes financieros del cierre del año 2012 de la Superintendencia de Sociedades (Superintendencia de Sociedades, 2012).
Resumo:
Esta disertación busca estudiar los mecanismos de transmisión que vinculan el comportamiento de agentes y firmas con las asimetrías presentes en los ciclos económicos. Para lograr esto, se construyeron tres modelos DSGE. El en primer capítulo, el supuesto de función cuadrática simétrica de ajuste de la inversión fue removido, y el modelo canónico RBC fue reformulado suponiendo que des-invertir es más costoso que invertir una unidad de capital físico. En el segundo capítulo, la contribución más importante de esta disertación es presentada: la construcción de una función de utilidad general que anida aversión a la pérdida, aversión al riesgo y formación de hábitos, por medio de una función de transición suave. La razón para hacerlo así es el hecho de que los individuos son aversos a la pérdidad en recesiones, y son aversos al riesgo en auges. En el tercer capítulo, las asimetrías en los ciclos económicos son analizadas junto con ajuste asimétrico en precios y salarios en un contexto neokeynesiano, con el fin de encontrar una explicación teórica de la bien documentada asimetría presente en la Curva de Phillips.
Resumo:
In this paper, investment cost asymmetry is introduced in order to test wheter this kind of asymmetry can account for asymmetries in business cycles. By using a smooth transition function, asymmetric investment cost is modeled and introduced in a canonical RBC model. Simulations of the model with Perturbations Method (PM) are very close to simulations through Parameterized Expectations Algorithm (PEA), which allows the use of the former for the sake of time reduction and computational costs. Both symmetric and asymmetric models were simulated and compared. Deterministic and stochastic impulse-response excersices revealed that it is possible to adequately reproduce asymmetric business cycles by modeling asymmetric investment costs. Simulations also showed that higher order moments are insu_cient to detect asymmetries. Instead, methods such as Generalized Impulse Response Analysis (GIRA) and Nonlinear Econometrics prove to be more e_cient diagnostic tools.
Resumo:
Small, at-risk populations are those for which accurate demographic information is most crucial to conservation and recovery, but also where data collection is constrained by logistical challenges and small sample sizes. Migratory animals in particular may experience a wide range of threats to survival and reproduction throughout each annual cycle, and identification of life stages most critical to persistence may be especially difficult for these populations. The endangered eastern Canadian breeding population of Piping Plover (Charadrius melodus melodus) was estimated at only 444 adults in 2005, and extensive effort has been invested in conservation activities, reproductive monitoring, and marking of individual birds, providing a comprehensive data set on population dynamics since 1998. We used these data to build a matrix projection model for two Piping Plover population segments that nest in eastern Canada in order to estimate both deterministic and stochastic rates of population growth (λd and λs, respectively). Annual population censuses suggested moderate growth in abundance between 1998–2003, but vital rate estimates indicated that this temporary growth may be replaced by declines in the long term, both in southern Nova Scotia (λd = 1.0043, λs = 0.9263) and in the Gulf of St. Lawrence (λd = 0.9651, λs = 0.8214). Nonetheless, confidence intervals on λ estimates were relatively wide, highlighting remaining uncertainty in future population trajectories. Differences in projected growth between regions appear to be driven by low estimated juvenile post-fledging survival in the Gulf, but threats to juveniles of both population segments following departure from nesting beaches remain unidentified. Similarly, λ in both population segments was particularly sensitive to changes in adult survival as expected for most migratory birds, but very little is understood about the threats to Piping Plover survival during migration and overwintering. Consequently, we suggest that future recovery efforts for these and other vulnerable migrants should quantify and manage the largely unknown sources of both adult and juvenile mortality during non-breeding seasons while maintaining current levels of nesting habitat protection.
Resumo:
Myxozoans, belonging to the recently described Class Malacosporea, parasitise freshwater bryozoans during at least part of their life cycle, but no complete malacosporean life cycle is known to date. One of the 2 described malacosporeans is Tetracapsuloides bryosalmonae, the causative agent of salmonid proliferative kidney disease. The other is Buddenbrockia plumatellae, so far only found in freshwater bryozoans. Our investigations evaluated malacosporean life cycles, focusing on transmission from fish to bryozoan and from bryozoan to bryozoan. We exposed bryozoans to possible infection from: stages of T bryosalmonae in fish kidney and released in fish urine; spores of T bryosalmonae that had developed in bryozoan hosts; and spores and sac stages of B. plumatellae that had developed in bryozoans. Infections were never observed by microscopic examination of post-exposure, cultured bryozoans and none were detected by PCR after culture. Our consistent negative results are compelling: trials incorporated a broad range of parasite stages and potential hosts, and failure of transmission across trials cannot be ascribed to low spore concentrations or immature infective stages. The absence of evidence for bryozoan to bryozoan transmissions for both malacosporeans strongly indicates that such transmission is precluded in malacosporean life cycles. Overall, our results imply that there may be another malacosporean host which remains unidentified, although transmission from fish to bryozoans requires further investigation. However, the highly clonal life history of freshwater bryozoans is likely to allow both long-term persistence and spread of infection within bryozoan populations, precluding the requirement for regular transmission from an alternate host.
Resumo:
We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.
Resumo:
Risk management (RM) comprises of risk identification, risk analysis, response planning, monitoring and action planning tasks that are carried out throughout the life cycle of a project in order to ensure that project objectives are met. Although the methodological aspects of RM are well-defined, the philosophical background is rather vague. In this paper, a learning-based approach is proposed. In order to implement this approach in practice, a tool has been developed to facilitate construction of a lessons learned database that contains risk-related information and risk assessment throughout the life cycle of a project. The tool is tested on a real construction project. The case study findings demonstrate that it can be used for storing as well as updating risk-related information and finally, carrying out a post-project appraisal. The major weaknesses of the tool are identified as, subjectivity of the risk rating process and unwillingness of people to enter information about reasons of failure.
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.
Resumo:
A global archive of high-resolution (3-hourly, 0.58 latitude–longitude grid) window (11–12 mm) brightness temperature (Tb) data from multiple satellites is being developed by the European Union Cloud Archive User Service (CLAUS) project. It has been used to construct a climatology of the diurnal cycle in convection, cloudiness, and surface temperature for all regions of the Tropics. An example of the application of the climatology to the evaluation of the climate version of the U.K. Met. Office Unified Model (UM), version HadAM3, is presented. The characteristics of the diurnal cycle described by the CLAUS data agree with previous observational studies, demonstrating the universality of the characteristics of the diurnal cycle for land versus ocean, clear sky versus convective regimes. It is shown that oceanic deep convection tends to reach its maximum in the early morning. Continental convection generally peaks in the evening, although there are interesting regional variations, indicative of the effects of complex land–sea and mountain–valley breezes, as well as the life cycle of mesoscale convective systems. A striking result from the analysis of the CLAUS data has been the extent to which the strong diurnal signal over land is spread out over the adjacent oceans, probably through gravity waves of varying depths. These coherent signals can be seen for several hundred kilometers and in some instances, such as over the Bay of Bengal, can lead to substantial diurnal variations in convection and precipitation. The example of the use of the CLAUS data in the evaluation of the Met. Office UM has demonstrated that the model has considerable difficulty in capturing the observed phase of the diurnal cycle in convection, which suggests some fundamental difficulties in the model’s physical parameterizations. Analysis of the diurnal cycle represents a powerful tool for identifying and correcting model deficiencies.
Resumo:
Forest soils account for a large part of the stable carbon pool held in terrestrial ecosystems. Future levels of atmospheric CO2 are likely to increase C input into the soils through increased above- and below-ground production of forests. This increased input will result in greater sequestration of C only if the additional C enters stable pools. In this review, we compare current observations from four large-scale Free Air FACE Enrichment (FACE) experiments on forest ecosystems (EuroFACE, Aspen-FACE, Duke FACE and ORNL-FACE) and consider their predictive power for long-term C sequestration. At all sites, FACE increased fine root biomass, and in most cases higher fine root turnover resulted in higher C input into soil via root necromass. However, at all sites, soil CO2 efflux also increased in excess of the increased root necromass inputs. A mass balance calculation suggests that a large part of the stimulation of soil CO2 efflux may be due to increased root respiration. Given the duration of these experiments compared with the life cycle of a forest and the complexity of processes involved, it is not yet possible to predict whether elevated CO2 will result in increased C storage in forest soil.