628 resultados para LAU
Resumo:
An approach to transfer a high-quality Si layer for the fabrication of silicon-on-insulator wafers has been proposed based on the investigation of platelet and crack formation in hydrogenated epitaxialSi/Si0.98B0.02/Si structures grown by molecular-beam epitaxy. H-related defect formation during hydrogenation was found to be very sensitive to the thickness of the buried Si0.98B0.02 layer. For hydrogenated Si containing a 130nm thick Si0.98B0.02 layer, no platelets or cracking were observed in the B-doped region. Upon reducing the thickness of the buried Si0.98B0.02 layer to 3nm, localized continuous cracking was observed along the interface between the Si and the B-doped layers. In the latter case, the strains at the interface are believed to facilitate the (100)-oriented platelet formation and (100)-oriented crack propagation.
Resumo:
We report a process for the lift-off of an ultrathin Si layer. By plasma hydrogenation of a molecular-beam-epitaxy-grown heterostructure of SiSb-doped-SiSi, ultrashallow cracking is controlled to occur at the depth of the Sb-doped layer. Prior to hydrogenation, an oxygen plasma treatment is used to induce the formation of a thin oxide layer on the surface of the heterostructure. Chemical etching of the surface oxide layer after hydrogenation further thins the thickness of the separated Si layer to be only 15 nm. Mechanisms of hydrogen trapping and strain-facilitated cracking are discussed. © 2005 American Institute of Physics.
Resumo:
Nanocystalline TiO2 particles were successfully synthesized on porous hosts (SBA-15 and ZSM-15) via a sol-gel impregnation method. Resulting nanocomposites were characterized by XRD, TEM, BET surface analysis, Raman and UV-vis diffuse reflectance spectroscopy, and their photocatalytic activity for H2 production evaluated. XRD evidences the formation of anatase nanoparticles over both ZSM-5 and SBA-15 porous supports, with TEM highlighting a strong particle size dependence on titania precursor concentration. Photocatalytic activities of TiO2/ZSM-5 and TiO2/SBA-15 composites were significantly enhanced compared to pure TiO2, owing to the smaller TiO2 particle size and higher surface area of the former. TiO2 loadings over the porous supports and concomitant photocatalytic hydrogen production were optimized with respect to light absorption, available surface reaction sites and particle size. 10%TiO2/ZSM-5 and 20%TiO2/SBA-15 proved the most active photocatalysts, exhibiting extraordinary hydrogen evolution rates of 10,000 and 8800μmolgTiO2 -1 h-1 under full arc, associated with high external quantum efficiencies of 12.6% and 5.4% respectively under 365nm irradiation.
Resumo:
This paper discusses demand and supply chain management and examines how artificial intelligence techniques and RFID technology can enhance the responsiveness of the logistics workflow. This proposed system is expected to have a significant impact on the performance of logistics networks by virtue of its capabilities to adapt unexpected supply and demand changes in the volatile marketplace with the unique feature of responsiveness with the advanced technology, Radio Frequency Identification (RFID). Recent studies have found that RFID and artificial intelligence techniques drive the development of total solution in logistics industry. Apart from tracking the movement of the goods, RFID is able to play an important role to reflect the inventory level of various distribution areas. In today’s globalized industrial environment, the physical logistics operations and the associated flow of information are the essential elements for companies to realize an efficient logistics workflow scenario. Basically, a flexible logistics workflow, which is characterized by its fast responsiveness in dealing with customer requirements through the integration of various value chain activities, is fundamental to leverage business performance of enterprises. The significance of this research is the demonstration of the synergy of using a combination of advanced technologies to form an integrated system that helps achieve lean and agile logistics workflow.
Resumo:
This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.
Resumo:
Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09
Resumo:
Purpose: To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease.Methods: Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index.Results: Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p<0.05). Arterial reaction time was linked to serum creatinine (p=0.036) and eGFR (p=0.039), venous reaction time was linked to creatinine clearance (p=0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p<0.001 and p=0.003 respectively) and the dilatation amplitude (p=0.038 and p=0.048 respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p=0.004) and dilatation amplitude (p=0.017), vWf was linked to the maximum constriction response (p=0.016), and creatinine clearance to the baseline diameter fluctuation (p=0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p=0.022). Conclusions: Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Hole 841B was drilled in the forearc region of the Lau Basin at a water depth of 4810 m. The hole penetrated a roughly 500-m-thick series of Miocene volcanic sediments with a number of basaltic to andesitic units (sills?) varying in thickness between 7 cm and 17 m. The volcanics are slightly to moderately altered and contain analcite, chabazite, natrolite-thompsonite, heulandite (?), prehnite, and quartz as secondary phases. In addition, thaumasite [Ca3Si(OH)6 * 12H2O](SO4)(CO3) was identified in the altered sequence. Sulfur isotope data of two thaumasite separates (+23.5 per mil and +21.1 per mil d34S) indicate a seawater origin of the sulfate sulfur. It is suggested that thaumasite is a product of low-temperature (<60 °C), seawater-derived CaCl2-rich fluids that were almost identical in composition to those presently circulating in the sub-seafloor.
Resumo:
Ocean Drilling Program Leg 135 provided igneous rock cores from six sites drilled on a transect across the Lau Basin between the Lau Ridge remnant arc and the modem spreading ridges of the Central and Eastern Lau Spreading Centers. The drill cores sampled crust from the earliest stage of backarc extension (latest Miocene time, about 6 Ma), and younger crust (late Pliocene, about 3.8-2 Ma, and middle Pleistocene, about 0.64-0.8 Ma). Nearly all of the igneous samples are from tholeiitic basalt flows; many of them are interbedded with arc-composition volcaniclastic sediments. Rock compositions range from olivine-plagioclase-clinopyroxene basalt, with up to 8% MgO, to oceanic andesites with less than 3.2% MgO and silica contents as high as 56%. The oldest rocks recovered are close in composition to rocks formed at the modern Central and Eastern Lau Spreading Centers and have MORB-like characteristics. Generation of the oldest units was coeval with arc-tholeiitic volcanism on the Lau Ridge less than 100 km to the west. The arc and backarc melts came from different mantle sources. At three sites near the center of the basin, the crust is arc-tholeiitic basalt, two-pyroxene basaltic-andesite, and two-pyroxene andesite. These rocks have many similarities to modem Tofua Arc lavas yet they were drilled within 70 km of the MORB-like Eastern Lau Spreading Center. Estimates of the minimum age for these arc-like rocks indicate that they are late Pliocene (about 2 Ma). These ages overlap the age of the nearby Eastern Lau Spreading Center. The heterogeneous crust of the Lau Basin carries many of the signatures of supra-subduction zone (SSZ) melts but also has a distinct MORB-like component. Mixing between SSZ and MORB mantle sources may explain the variations and the spatial distribution of magma types.
Resumo:
The results of inductively coupled argon plasma (ICAP) chemical analyses carried out on some 300 core samples from Ocean Drilling Program Sites 834, 835, 838, and 839 are presented. These sites were drilled during Leg 135 in the Lau Basin. The data are compared with total gamma (SGR) wireline logs at Sites 834 and 835. Pliocene (Piacenzian) nannofossil Zone CN12, which has been identified at Sites 834 and 835, is examined in detail using spectral analyses on core and wireline logs. The potassium and calcium concentrations from the core material were used to calculate an objective depth-to-geological time stretching function, which improved the stratigraphic correlation between sites. The integrated use of chemical analyses, wireline-log data and paleomagnetic results improved confidence in the correlations obtained. Although no significant sedimentation periodicities were obtained from the two sites, a common concentration of energy between 30 and 60 k.y. was recorded.
Resumo:
Concentrations of dark-colored, highly vesicular, quench-textured mesostasis occur commonly in volcanic rocks drilled in the Lau Basin during Leg 135. These segregations occur as veins, patches, and vesicle linings in rocks with 49%-54% SiO2. The segregations are depleted in Mg, Ca, Al, Sc, Ni, and Cr and enriched in Ti, Ba, Y, and Zr compared to the groundmass with which they occur. Many of the segregations are unusually enriched in copper. The elemental variations show that the segregations are residual liquids produced by 12%-55% crystallization of plagioclase and clinopyroxene, with minor olivine, opaques, or orthopyroxene from the groundmass melt. The liquids forming the segregations are mobilized and emplaced in earlier formed vesicles during the rapid crystallization of the groundmass. The dominant process in this mobilization and emplacement is volatile exsolution from crystallizing melts constrained by a rigid crystalline framework. This exsolution produces significant overpressures within the late-stage melts; the overpressure drives the residual melts through the walls of the older vesicles, along planes of weakness, and into voids. This mechanism is consistent with the occurrence of bimodal vesicle populations in many of the host lavas.