706 resultados para Kansainvälinen ilmastopaneeli IPCC


Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este documento, producto del programa de trabajo conjunto de la Comisión Económica para América Latina y el Caribe (CEPAL) y los Ministerios de Agricultura de los países miembros del Consejo Agropecuario Centroamericano del Sistema de Integración Centroamericana (SICA), coordinado con su Secretaría Ejecutiva (SECAC) y su Grupo Técnico de Cambio Climático y Gestión Integral de Riesgo, se estudia la relación de la temperatura y la precipitación y otras variables con los rendimientos en 95 unidades geográficas subnacionales productores del café en los siete países de Centroamérica en la década del 2000. Valiéndose del método de funciones de producción, se estiman los impactos potenciales del cambio climático sobre estos rendimientos durante el presente siglo, utilizando dos escenarios del Panel Intergubernamental de Cambio Climático (IPCC), una con una trayectoria de alza de emisiones menor (B2) y otra de emisiones crecientes e inacción global cercana a la trayectoria endencial actual (A2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are significant, fundamental changes taking place in global air and sea surface temperatures and sea levels. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change noted that many of the warmest years on the instrumental record of global surface temperatures have occurred within the last twelve years, i.e. 1995-2006 (IPCC, 2007). The Caribbean tourism product is particularly vulnerable to climate change. On the demand side, mitigation measures in other countries – for example, measures to reduce the consumption of fossil fuels – could have implications for airfares and cruise prices and, therefore, for the demand for travel, particularly to long-haul destinations such as the Caribbean (Clayton, 2009). On the supply side, sea level rise will cause beaches to disappear and damage coastal resorts. Changes in the frequency and severity of hurricanes are likely to magnify that damage. Other indirect impacts on the tourism product include rising insurance premiums and competition for water resources (Cashman, Cumberbatch, & Moore, 2012). The present report has used information on historic and future Caribbean climate data to calculate that the Caribbean tourism climatic index (TCI) ranges from −20 (impossible) to +100 (ideal). In addition to projections for the Caribbean, the report has produced TCI projections for the New York City area (specifically, Central Park), which have been used as comparators for Caribbean country projections. The conditions in the source market provide a benchmark against which visitors may judge their experience in the tourism destination. The historical and forecasted TCIs for the Caribbean under both the A2 and B2 climate scenarios of the IPCC suggest that climatic conditions in the Caribbean are expected to deteriorate, and are likely to become less conducive to tourism. More specifically, the greatest decline in the TCI is likely to occur during the northern hemisphere summer months from May to September. At the same time, the scenario analysis indicates that home conditions during the traditional tourist season (December – April) are likely to improve, which could make it more attractive for visitors from these markets to consider ‘staycations’ as an alternative to overseas trips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report analyses the agriculture, energy, and health sectors in Trinidad and Tobago to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Trinidad and Tobago. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The study of the impact of climate change on the agriculture sector focused on root crops, green vegetables and fisheries. For these sectors combined, the cumulative loss under the A2 scenario is calculated as approximately B$2.24 and approximately B$1.72 under the B2 scenario by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios, respectively. Given the potential for significant damage to the agriculture sector a large number of potential adaptation measures were considered. Out of these a short-list of 10 potential options were selected by applying 10 evaluation criteria. All of the adaptation strategies showed positive benefits. The analysis indicate that the options with the highest net benefits are: (1) Building on-farm water storage, (2) Mainstreaming climate change issues into agricultural management and (3) Using drip irrigation. Other attractive options include water harvesting. The policy decisions by governments should include these assessments, the omitted intangible benefits, as well as the provision of other social goals such as employment. The analysis of the energy sector has shown that the economic impact of climate change during 2011-2050 is similar under the A2 (US$142.88 million) and B2 (US$134.83 million) scenarios with A2 scenario having a slightly higher cost (0.737% of 2009 GDP) than the B2 scenario (0.695% of 2009 GDP) for the period. On the supply side, analyses indicate that Trinidad and Tobago’s energy sector will be susceptible to the climate change policies of major energy-importing countries (the United States of America and China), and especially to their renewable energy strategies. Implementation of foreign oil substitution policy by the United States of America will result in a decline in Trinidad and Tobago’s Liquefied Natural Gas (LNG) export (equivalent to 2.2% reduction in 2009 GDP) unless an alternative market is secured for the lost United States of America market. China, with its rapid economic growth and the highest population in the world, offers a potential replacement market for Trinidad and Tobago’s LNG export. In this context the A2 scenario will offer the best option for Trinidad and Tobago’s energy sector. The cost-benefit analysis undertaken on selected adaptation strategies reveal that the benefit-cost ratio of replacing electric water heaters with solar water heaters is the most cost-effective. It was also found that the introduction of Compact Fluorescent Light (CFL) and Variable Refrigerant Volume (VRV) air conditioners surpasses the projected cost of increased electricity consumption due to climate change, and provides an economic rationale for the adoption of these adaptation options even in a situation of increased electricity consumption occasioned by climate change. Finally, the conversion of motor fleets to Compressed Natural Gas (CNG) is a cost-effective adaptation option for the transport sector, although it has a high initial cost of implementation and the highest per capita among the four adaptation options evaluated. To investigate the effect of climate change on the health sector dengue fever, leptospirosis, food borne illnesses, and gastroenteritis were examined. The total number of new dengue cases for the period 2008 to 2050 was 204,786 for BAU, 153,725 for A2 and 131,890 for the B2 scenario. With regard to the results for leptospirosis, A2 and B2 seem to be following a similar path with total number of new cases in the A2 scenario being 9,727 and 9,218 cases under the B2 scenario. Although incidence levels in the BAU scenario coincided with those of A2 and B2 prior to 2020, they are somewhat lower post 2020. A similar picture emerges for the scenarios as they relate to food-borne illnesses and to gastroenteritis. Specifically for food-borne illnesses, the BAU scenario recorded 27,537 cases, the A2 recorded 28,568 cases and the B2 recorded 28,679 cases. The focus on the selected sources of morbidity in the health sector has highlighted the fact that the vulnerability of the country’s health sector to climate change does not depend solely on exogenously derived impacts, but also on the behaviour and practices among the population. It is clear that the vulnerability which became evident in the analysis of the impacts on dengue fever, leptospirosis and food-borne illnesses is not restricted solely to climate or other external factors. The most important adaptation strategy being recommended targets lifestyle, behaviour and attitude changes. The population needs to be encouraged to alter their behaviours and practices so as to minimise their exposure to harmful outcomes as it relates to the incidence of these diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Saint Lucia to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change in Saint Lucia. It also has the potential to provide essential input for identifying and preparing policies and strategies to help advance the Caribbean subregion closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated impacts of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies for each sector was also undertaken using standard evaluation techniques. The key subsectors in agriculture are expected to have mixed impacts under the A2 and B2 scenarios. Banana, fisheries and root crop outputs are expected to fall with climate change, but tree crop and vegetable production are expected to rise. In aggregate, in every decade up to 2050, these sub-sectors combined are expected to experience a gain under climate change with the highest gains under A2. By 2050, the cumulative gain under A2 is calculated as approximately US$389.35 million and approximately US$310.58 million under B2, which represents 17.93% and 14.30% of the 2008 GDP respectively. This result was unexpected and may well be attributed to the unavailability of annual data that would have informed a more robust assessment. Additionally, costs to the agriculture sector due to tropical cyclones were estimated to be $6.9 million and $6.2 million under the A2 and B2 scenarios, respectively. There are a number of possible adaptation strategies that can be employed by the agriculture sector. The most attractive adaptation options, based on the benefit-cost ratio are: (1) Designing and implementation of holistic water management plans (2) Establishment of systems of food storage and (3) Establishment of early warning systems. Government policy should focus on the development of these adaption options where they are not currently being pursued and strengthen those that have already been initiated, such as the mainstreaming of climate change issues in agricultural policy. The analysis of the health sector placed focus on gastroenteritis, schistosomiasis, ciguatera poisoning, meningococal meningitis, cardiovascular diseases, respiratory diseases and malnutrition. The results obtained for the A2 and B2 scenarios demonstrate the potential for climate change to add a substantial burden to the health system in the future, a factor that will further compound the country’s vulnerability to other anticipated impacts of climate change. Specifically, it was determined that the overall Value of Statistical Lives impacts were higher under the A2 scenario than the B2 scenario. A number of adaptation cost assumptions were employed to determine the damage cost estimates using benefit-cost analysis. The benefit-cost analysis suggests that expenditure on monitoring and information provision would be a highly efficient step in managing climate change and subsequent increases in disease incidence. Various locations in the world have developed forecasting systems for dengue fever and other vector-borne diseases that could be mirrored and implemented. Combining such macro-level policies with inexpensive micro-level behavioural changes may have the potential for pre-empting the re-establishment of dengue fever and other vector-borne epidemic cycles in Saint Lucia. Although temperature has the probability of generating significant excess mortality for cardiovascular and respiratory diseases, the power of temperature to increase mortality largely depends on the education of the population about the harmful effects of increasing temperatures and on the existing incidence of these two diseases. For these diseases it is also suggested that a mix of macro-level efforts and micro-level behavioural changes can be employed to relieve at least part of the threat that climate change poses to human health. The same principle applies for water and food-borne diseases, with the improvement of sanitation infrastructure complementing the strengthening of individual hygiene habits. The results regarding the tourism sector imply that the tourism climatic index was likely to experience a significant downward shift in Saint Lucia under the A2 as well as the B2 scenario, indicative of deterioration in the suitability of the island for tourism. It is estimated that this shift in tourism features could cost Saint Lucia about 5 times the 2009 GDP over a 40-year horizon. In addition to changes in climatic suitability for tourism, climate change is also likely to have important supply-side effects on species, ecosystems and landscapes. Two broad areas are: (1) coral reefs, due to their intimate link to tourism, and, (2) land loss, as most hotels tend to lie along the coastline. The damage related to coral reefs was estimated at US$3.4 billion (3.6 times GDP in 2009) under the A2 scenario and US$1.7 billion (1.6 times GDP in 2009) under the B2 scenario. The damage due to land loss arising from sea level rise was estimated at US$3.5 billion (3.7 times GDP) under the A2 scenario and US$3.2 billion (3.4 times GDP) under the B2 scenario. Given the potential for significant damage to the industry a large number of potential adaptation measures were considered. Out of these a short-list of 9 potential options were selected by applying 10 evaluation criteria. Using benefit-cost analyses 3 options with positive ratios were put forward: (1) increased recommended design speeds for new tourism-related structures; (2) enhanced reef monitoring systems to provide early warning alerts of bleaching events, and, (3) deployment of artificial reefs or other fish-aggregating devices. While these options had positive benefit-cost ratios, other options were also recommended based on their non-tangible benefits. These include the employment of an irrigation network that allows for the recycling of waste water, development of national evacuation and rescue plans, providing retraining for displaced tourism workers and the revision of policies related to financing national tourism offices to accommodate the new climate realities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report analyses the agriculture, health and tourism sectors in Jamaica to assess the potential economic impacts of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Jamaica. It also has the potential to provide essential input for identifying and preparing policies and strategies to help move the Region closer to solving problems associated with climate change and attaining individual and regional sustainable development goals. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050. An evaluation of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The outcomes from investigating the agriculture sector indicate that for the sugar-cane subsector the harvests under both the A2 and B2 scenarios decrease at first and then increase as the mid-century mark is approached. With respect to the yam subsector the results indicate that the yield of yam will increase from 17.4 to 23.1 tonnes per hectare (33%) under the A2 scenario, and 18.4 to 23.9 (30%) tonnes per hectare under the B2 scenario over the period 2011 to 2050. Similar to the forecasts for yam, the results for escallion suggest that yields will continue to increase to mid-century. Adaptation in the sugar cane sub-sector could involve replanting and irrigation that appear to generate net benefits at the three selected discount rates for the A2 scenario, but only at a discount rate of 1% for the B2 scenario. For yam and escallion, investment in irrigation will earn significant net benefits for both the A2 and B2 scenarios at the three selected rates of discount. It is recommended that if adaptation strategies are part of a package of strategies for improving efficiency and hence enhancing competitiveness, then the yields of each crop can be raised sufficiently to warrant investment in adaptation to climate change. The analysis of the health sector demonstrates the potential for climate change to add a substantial burden to the future health systems in Jamaica, something that that will only compound the country’s vulnerability to other anticipated impacts of climate change. The results clearly show that the incidence of dengue fever will increase if climate change continues unabated, with more cases projected for the A2 scenario than the B2. The models predicted a decrease in the incidence of gastroenteritis and leptospirosis with climate change, indicating that Jamaica will benefit from climate change with a reduction in the number of cases of gastroenteritis and leptospirosis. Due to the long time horizon anticipated for climate change, Jamaica should start implementing adaptation strategies focused on the health sector by promoting an enabling environment, strengthening communities, strengthening the monitoring, surveillance and response systems and integrating adaptation into development plans and actions. Small-island developing states like Jamaica must be proactive in implementing adaptation strategies, which will reduce the risk of climate change. On the global stage the country must continue to agitate for the implementation of the mitigation strategies for developed countries as outlined in the Kyoto protocol. The results regarding the tourism sector suggest that the sector is likely to incur losses due to climate change, the most significant of which is under the A2 scenario. Climatic features, such as temperature and precipitation, will affect the demand for tourism in Jamaica. By 2050 the industry is expected to lose US$ 132.2 million and 106.1 million under the A2 and B2 scenarios, respectively. In addition to changes in the climatic suitability for tourism, climate change is also likely to have important supply-side effects from extreme events and acidification of the ocean. The expected loss from extreme events is projected to be approximately US$ 5.48 billion (A2) and US$ 4.71 billion (B2). Even more devastating is the effect of ocean acidification on the tourism sector. The analysis shows that US$ 7.95 billion (A2) and US$ 7.04 billion is expected to be lost by mid-century. The benefit-cost analysis indicates that most of the adaptation strategies are expected to produce negative net benefits, and it is highly likely that the cost burden would have to be carried by the state. The options that generated positive ratios were: redesigning and retrofitting all relevant tourism facilities, restoring corals and educating the public and developing rescue and evacuation plans. Given the relative importance of tourism to the macroeconomy one possible option is to seek assistance from multilateral funding agencies. It is recommended that the government first undertake a detailed analysis of the vulnerability of each sector and, in particular tourism, to climate change. Further, more realistic socio-economic scenarios should be developed so as to inform future benefit-cost analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report analyses the agriculture, coastal and human settlements and health sectors in Guyana to assess the potential economic impacts of climate change. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Guyana. It also has the potential to provide essential input for identifying and preparing policies and strategies to help bring the Caribbean sub-region closer to solving problems associated with climate change and attaining national and regional sustainable development goals. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050 (agriculture and health sectors) and 2100 (coastal and human settlements sector). An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The study of the impact of climate change on the agriculture sector focused on three leading sub-sectors namely: sugar-cane, rice-paddy and fisheries. In estimating costs, the sugar sub-sector is projected to experience losses under A2 between US$ 144 million (at 4% discount rate) and US$300 million (1% rate); comparative statistics for rice are US$795 million and US$1577 million, respectively; while for fisheries, the results show that losses range from US$15 million (4% rate) and US$34 million (1% rate). In general, under the B2 scenarios, there are gains for sugar up to 2030 under all three discount rates while for rice the performance is somewhat better with gains realized under all three discount rates up to 2040. For fisheries, gains are forecasted under all three rates up to 2050, following marginal losses to 2020. In terms of the benefit-cost analysis conducted on selected adaptation measures under the A2 scenario, there were net benefits for all three commodities under all three discount rates. For the sugar-cane sub-sector these are: drainage and irrigation upgrade, purchase of new machinery for planting and harvesting, developing and replanting climate tolerant sugar-cane. The rice-paddy sub-sector will benefit from adaptive strategies, which include maintenance of drainage and irrigation systems, research and development, as well as education and training. Adaptation in the fisheries sub-sector must include measures such as, mangrove development and restoration and public education. The analysis of the coastal and human settlements sector has shown that based upon exposed assets and population, SLR can be classified as having the potential to create catastrophic conditions in Guyana. The main contributing factor is the concentration of socioeconomic infrastructure along the coastline in vulnerable areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report analyses the coastal and human settlements, tourism and transport sectors in Barbados to assess the potential economic impact of climate change on the sectors. The fundamental aim of this report is to assist with the development of strategies to deal with the potential impact of climate change on Barbados. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources. The economic impact of climate change on the three sectors was estimated for the A2 and B2 IPCC scenarios until 2050 (tourism and transport sectors) and 2100 (coastal and human settlements sector). An exploration of various adaptation strategies was also undertaken for each sector using standard evaluation techniques. The analysis has shown that based upon exposed assets and population, SLR can be classified as having the potential to create potential catastrophe in Barbados. The main contributing factor is the concentration of socioeconomic infrastructure along the coastline in vulnerable areas. The A2 and B2 projections have indicated that the number of catastrophes that can be classified as great is likely to be increased for the country. This is based upon the possible effects of the projected unscheduled impacts to the economy both in terms of loss of life and economic infrastructure. These results arise from the A2 and B2 projections, thereby indicating that growth in numbers and losses are largely due to socioeconomic changes over the projection period and hence the need for increased adaptation strategies. A key adaptation measure recommended is for the government of Barbados to begin reducing the infrastructure deficit by continuously investing in protective infrastructure to decrease the country’s vulnerability to changes in the climate. With regard to the tourism sector, it was found that by combining the impacts due to a reduction in tourist arrivals, coral reef loss and SLR, estimated total economic impact of climate change is US $7,648 million (A2 scenario) and US $5,127 million (B2 scenario). An economic analysis of the benefits and costs of several adaptation options was undertaken to determine the cost effectiveness of each one and it was found that four (4) out of nine (9) options had high cost-benefit ratios. It is therefore recommended that the strategies that were most attractive in terms of the cost-benefit ratios be pursued first and these were: (1) enhanced reef monitoring systems to provide early warning alerts of bleaching events; (2) artificial reefs or fish-aggregating devices; (3) development of national adaptation plans (levee, sea wall and boardwalk); (4) revision of policies related to financing carbon neutral tourism; and (5) increasing recommended design wind speeds for new tourism-related structures. The total cost of climate change on international transportation in Barbados aggregated the impacts of changes in temperature and precipitation, new climate policies and SLR. The impact for air transportation ranges from US$10,727 million (B2 scenario) to US$12,279 million (A2 scenario) and for maritime transportation impact estimates range from US$1,992 million (B2 scenario) to US$2,606 million (A2 scenario). For international transportation as a whole, the impact of climate change varies from US$12,719 million under the B2 scenario to US$14,885 million under the A2 scenario. Barbados has the institutions set up to implement adaptive strategies to strengthen the resilience of the existing international transportation system to climate change impacts. Air and sea terminals and facilities can be made more robust, raised, or even relocated as need be, and where critical to safety and mobility, expanded redundant systems may be considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study assesses the potential economic impact of climate change on coastal human settlements in the Caribbean, with specific reference to Barbados, and evaluates the costs and benefits of undertaking various adaptation strategies. The aim is to assist Caribbean territories in developing the strategies and capacity needed to deal with the potential impact of severe weather events that are anticipated to occur with increased frequency and intensity as a result of climate change. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources.This research focuses on how human settlements distributed along the coast of Guyana, especially those in low elevation coastal zones (LECZ)are affected by these impacts. Focusing on three potential transmission sources - sea-level rise, stronger storm hazards and increased precipitation – the study considers the vulnerability of populations in the LECZ areas and estimates the overall threat posed by climate change to coastal populations and infrastructure. Vulnerability to climate change (measured as exposed assets) was estimated for four emission scenarios as outlined by the Special Report on Emissions Scenarios (SRES), namely the A1, A2, B1 and B2 scenarios for the period 2010 to 2100 and as detailed by the Intergovernmental Panel on Climate Change (IPCC), using global circulation models (GCM) and storm surge hazard maps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also in terms of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Montserrat for the period 2010 - 2050, and by estimating the monetary value associated with this excess disease burden. The diseases initially considered in this report are variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrheal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1%, 2% and 4%, results show mean annual costs (morbidity and mortality) ranges of $0.61 million (in the B2 scenario, discounted at 4% annually) – $1 million (in the A2 scenario, discounted at 1% annually) for Montserrat. These costs are compared to adaptation cost scenarios involving increased direct spending on per capita health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health burdens in the period 2010-2050. The methodology and results suggest that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for Montserrat. Also the report highlights the need for this to be part of a coordinated regional response that avoids duplication in spending.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change has the potential to impact on global, regional, and national disease burdens both directly and indirectly. Projecting and valuing these health impacts is important not only in terms of assessing the overall impact of climate change on various parts of the world, but also of ensuring that national and regional decision-making institutions have access to the data necessary to guide investment decisions and future policy design. This report contributes to the research focusing on projecting and valuing the impacts of climate change in the Caribbean by projecting the climate change-induced excess disease burden for two climate change scenarios in Saint Lucia for the period 2010 - 2050, and by estimating the non-market, statistical life-based costs associated with this excess disease burden. The diseases initially considered in this report are a variety of vector and water-borne impacts and other miscellaneous conditions; specifically, malaria, dengue fever, gastroenteritis/diarrhoeal disease, schistosomiasis, leptospirosis, ciguatera poisoning, meningococcal meningitis, and cardio-respiratory diseases. Disease projections were based on derived baseline incidence and mortality rates, available dose-response relationships found in the published literature, climate change scenario population projections for the A2 and B2 IPCC SRES scenario families, and annual temperature and precipitation anomalies as projected by the downscaled ECHAM4 global climate model. Monetary valuation was based on a transfer value of statistical life approach with a modification for morbidity. Using discount rates of 1, 2, and 4%, results show mean annual costs (morbidity and mortality) ranges of $80.2 million (in the B2 scenario, discounted at 4% annually) -$182.4 million (in the A2 scenario, discounted at 1% annually) for St. Lucia.1 These costs are compared to adaptation cost scenarios involving direct and indirect interventions in health care. This comparison reveals a high benefit-cost ratio suggesting that moderate costs will deliver significant benefit in terms of avoided health costs from 2010-2050. In this context indirect interventions target sectors other than healthcare (e.g. water supply). It is also important to highlight that interventions can target both the supply of health infrastructure (including health status and disease monitoring), and households. It is suggested that a focus on coordinated data collection and improved monitoring represents a potentially important no regrets adaptation strategy for St Lucia. Also, the need for this to be part of a coordinated regional response that avoids duplication in spending is highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is considered to be the most pervasive and truly global of all issues affecting humanity. It poses a serious threat to the environment, as well as to economies and societies. Whilst it is clear that the impacts of climate change are varied, scientists have agreed that its effects will not be evenly distributed and that developing countries and small island developing States (SIDS) will be the first and hardest hit. Small island developing States, many of whom have fewer resources to adapt socially, technologically and financially to climate change, are considered to be the most vulnerable to the potential impacts of climate change. An economic analysis of climate change can provide essential input for identifying and preparing policies and strategies to help move the Caribbean closer to solving the problems associated with climate change, and to attaining individual and regional sustainable development goals. Climate change is expected to affect the health of populations. In fact, the World Health Organization (WHO), in Protecting Health from Climate Change (2008), states that the continuation of current patterns of fossil fuel use, development and population growth will lead to ongoing climate change, with serious effects on the environment and, consequently, on human lives and health. Assessing the economics of potential health impacts of climate variability and change requires an understanding of both the vulnerability of a population and its capacity to respond to new conditions. The Intergovernmental Panel on Climate Change (IPCC) defines vulnerability as the degree to which individuals and systems are susceptible to, or unable to cope with, the adverse effects of climate change, including climate variability and extremes (WHO and others, 2003). The United Nations Economic Commission for Latin America and the Caribbean (ECLAC), in collaboration with the Caribbean Community Centre for Climate Change (CCCCC), is pursuing a regional project to ―Review the Economics of Climate Change in the Caribbean‖ (RECCC). The purpose of the project is to assess the likely economic impacts of climate change on key sectors of Caribbean economies, through applying robust simulation modelling analyses under various socio-economic scenarios and carbon emission trajectories for the next 40 years. The findings are expected to stimulate local and national governments, regional institutions, the private sector and civil society to craft and implement policies, cost-effective options and efficient choices to mitigate and adapt to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty alleviation, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of St. Kitts and Nevis (SKN). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations for possible adaptation strategies and costs and benefits of adaptation.