971 resultados para KINETIC OSCILLATIONS
Resumo:
A number of excitable cell types respond to a constant hormonal stimulus with a periodic oscillation in intracellular calcium. The frequency of oscillation is often proportional to the hormonal stimulus, and one says that the stimulus is frequency encoded. Here we develop a theory of frequency encoding in excitable systems and apply it to intracellular calcium oscillations that results from increases in the intracellular level of inositol 1,4,5-triphosphate.
Resumo:
The rhythmogenesis of 10-Hz sleep spindles is studied in a large-scale thalamic network model with two cell populations: the excitatory thalamocortical (TC) relay neurons and the inhibitory nucleus reticularis thalami (RE) neurons. Spindle-like bursting oscillations emerge naturally from reciprocal interactions between TC and RE neurons. We find that the network oscillations can be synchronized coherently, even though the RE-TC connections are random and sparse, and even though individual neurons fire rebound bursts intermittently in time. When the fast gamma-aminobutyrate type A synaptic inhibition is blocked, synchronous slow oscillations resembling absence seizures are observed. Near-maximal network synchrony is established with even modest convergence in the RE-to-TC projection (as few as 5-10 RE inputs per TC cell suffice). The hyperpolarization-activated cation current (Ih) is found to provide a cellular basis for the intermittency of rebound bursting that is commonly observed in TC neurons during spindles. Such synchronous oscillations with intermittency can be maintained only with a significant degree of convergence for the TC-to-RE projection.
Resumo:
Rho-dependent transcription termination at certain terminators in Escherichia coli also depends on the presence of NusG [Sullivan, S. L. & Gottesman, M. E. (1992) Cell 68, 989-994]. We have found that termination at the first intragenic terminator in lacZ (tiZ1) is strongly dependent on NusG when transcription is done in vitro with the concentrations of NTPs found in vivo. With a lower level of NTPs, and consequently a slower rate of RNA-chain growth, Rho causes some termination by itself that is enhanced with NusG. These results suggest that NusG serves to overcome a kinetic limitation of Rho to function at certain terminators. At a second intragenic terminator within the lacZ reading frame (tiZ2) the efficiency of Rho-mediated termination was unaffected by either NusG or by RNA polymerase elongation kinetics. Thus, using purified components and intracellular levels of NTPs, we have confirmed the in vivo finding that certain Rho-dependent terminators also depend on NusG, whereas others do not.
Resumo:
Like other cell-surface receptors with intrinsic or associated protein-tyrosine kinase activity, the T-cell receptor complex undergoes a number of modifications, including tyrosine phosphorylation steps, after ligand binding but before transmitting a signal. The requirement for these modifications introduces a temporal lag between ligand binding and receptor signaling. A model for the T-cell receptor is proposed in which this feature greatly enhances the receptor's ability to discriminate between a foreign antigen and self-antigens with only moderately lower affinity. The proposed scheme is a form of kinetic proofreading, known to be essential for the fidelity of protein and DNA synthesis. A variant of this scheme is also described in which a requirement for formation of large aggregates may lead to a further enhancement of the specificity of T-cell activation. Through these mechanisms, ligands of different affinity potentially may elicit qualitatively different signals.
Resumo:
Tumor induced angiogenesis processes including the effect of stochastic motion and branching of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the tumor induced ingiogenic factor. The chemotactic force field depends on the flux of blood vessels through the angiogenic factor. We develop an existence and uniqueness theory for this system under natural assumptions on the initial data. The proof combines the construction of fundamental solutions for associated linearized problems with comparison principles, sharp estimates of the velocity integrals and compactness results for this type of kinetic and parabolic operators
Resumo:
The ion Drift Kinetic Equation (DKE) which describes the ion coUisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by peribrming a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.
Resumo:
Kinetics of 1,3-dipolar cycloaddition involving azomethine ylides, generated from thermal [1,2]-prototropy of the corresponding imino ester, employing differential scanning calorimetry (DSC), is surveyed. Glycine and phenylalanine derived imino esters have different behavior. The first one prefers reacting with itself at 75 ºC, rather than with the dipolarophile. However, the α-substituted imino ester gives the cycloadduct at higher temperatures. The thermal dynamic analysis by 1H NMR of the neat reaction mixture of the glycine derivative reveals the presence of signals corresponding to the dipole in very small proportion. The non-isothermal and isothermal DSC curves of the cycloaddition of phenylalaninate and diisobutyl fumarate are obtained from freshly prepared samples. The application of known kinetic models and mathematical multiple non-linear regressions (NLR) allow to determine and to compare Ea, lnA, reaction orders, and reaction enthalpy. Finally a rate equation for each different temperature can be established for this particular thermal cycloaddition.
Resumo:
The transitions and reactions involved in the thermal treatment of several commercial azodicarbonamides (ADC) in an inert atmosphere have been studied by dynamic thermogravimetry analysis (TGA), mass spectrometry and Fourier transform infrared (FTIR) spectroscopy. A pseudo-mechanistic model, involving several competitive and non-competitive reactions, has been suggested and applied to the correlation of the weight loss data. The model applied is capable of accurately representing the different processes involved, and can be of great interest in the understanding and quantification of such phenomena, including the simulation of the instantaneous amount of gases evolved in a foaming process. In addition, a brief discussion on the methodology related to the mathematical modeling of TGA data is presented, taking into account the complex thermal behaviour of the ADC.
Resumo:
Paper submitted to the 7th International Symposium on Feedstock Recycling of Polymeric Materials (7th ISFR 2013), New Delhi, India, 23-26 October 2013.
Resumo:
The cell concentration and size distribution of the microalgae Nannochloropsis gaditana were studied over the whole growth process. Various samples were taken during the light and dark periods the algae were exposed to. The distributions obtained exhibited positive skew, and no change in the type of distribution was observed during the growth process. The size distribution shifted to lower diameters in dark periods while in light periods the opposite occurred. The overall trend during the growth process was one where the size distribution shifted to larger cell diameters, with differences between initial and final distributions of individual cycles becoming smaller. A model based on the Logistic model for cell concentration as a function of time in the dark period that also takes into account cell respiration and growth processes during dark and light periods, respectively, was proposed and successfully applied. This model provides a picture that is closer to the real growth and evolution of cultures, and reveals a clear effect of light and dark periods on the different ways in which cell concentration and diameter evolve with time.
Resumo:
A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N2:O2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO2 have also been detected as the main gases. These results were confirmed by the TGA-MS.
Resumo:
Biomechanical adaptations that occur during pregnancy can lead to changes on gait pattern. Nevertheless, these adaptations of gait are still not fully understood. The purpose was to determine the effect of pregnancy on the biomechanical pattern of walking, regarding the kinetic parameters. A three-dimensional analysis was performed in eleven participants. The kinetic parameters in the joints of the lower limb during gait were compared at the end of the first, second, and third trimesters of pregnancy and in the postpartum period, in healthy pregnant women. The main results showed a reduction in the normalized vertical reaction forces, throughout pregnancy, particularly the third peak. Pregnant women showed, during most of the stance phase, medial reaction forces as a motor response to promote the body stability. Bilateral changes were observed in hip joint, with a decrease in the participation of the hip extensors and in the eccentric contraction of hip flexors. In ankle joint a decrease in the participation of ankle plantar flexors was found. In conclusion, the overall results point to biomechanical adjustments that showed a decrease of the mechanical load of women throughout pregnancy, with exception for few unilateral changes of hip joint moments.
Resumo:
Almost 20 years after the first conceptual design of the experiment, five years of running in the Gran Sasso underground laboratory (LNGS), and billions of billions muon-neutrinos sent from CERN along the CNGS beam, in 2015 the OPERA neutrino detector has allowed the long-awaited discovery of the direct transformation (oscillation) of muon-neutrinos into tau-neutrinos. This result unambiguously confirms the interpretation of the so-called atmospheric channel, after the discovery of neutrino oscillations by the Super-Kamiokande Collaboration in 1998.
Resumo:
T2K reports its first measurements of the parameters governing the disappearance of νµ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic νµ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector SuperKamiokande, 295 km away, where the νµ survival probability is expected to be minimal. Using a dataset corresponding to 4.01×10²⁰ protons on target, 34 fully contained µ-like events were observed. The best-fit oscillation parameters are sin²(θ₂₃) = 0.45 and |∆m^2_32| = 2.51 × 10⁻³ eV² with 68% confidence intervals of 0.38 - 0.64 and 2.26 - 2.80 ×10⁻³ eV² respectively. These results are in agreement with existing antineutrino parameter measurements and also with the νµ disappearance parameters measured by T2K.