961 resultados para KDV EQUATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exact bounded solutions for a fermion subject to exponential scalar potential in 1 + 1 dimensions are found in closed form. We discuss the existence of zero modes which are related to the ultrarelativistic limit of the Dirac equation and are responsible for the induction of a fractional fermion number on the vacuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we solve the Dirac equation by constructing the exact bound state solutions for a mixing of vector and scalar generalized Hartmann potentials. This is done provided the vector potential is equal to or minus the scalar potential. The cases of some quasi-exactly solvable and Morse-like potentials are briefly commented. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of a fermion subject to a general scalar potential in a two-dimensional world for nonzero eigenenergies is mapped into a Sturm-Liouville problem for the upper component of the Dirac spinor. In the specific circumstance of an exponential potential, we have an effective Morse potential which reveals itself as an essentially relativistic problem. Exact bound solutions are found in closed form for this problem. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail, particularly the existence of zero modes. (c) 2005 Elsevier B.v. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the paper Solutions of the Duffin-Kemmer-Petiau equation for a pseudoscalar potential step in (1+1) dimensions by Abdelmalek Boumali has a number of misconceptions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the work is to study the existence and nonexistence of shock wave solutions for the Burger equations. The study is developed in the context of Colombeau's theory of generalized functions (GFs). This study uses the equality in the strict sense and the weak equality of GFs. The shock wave solutions are given in terms of GFs that have the Heaviside function, in x and ( x, t) variables, as macroscopic aspect. This means that solutions are sought in the form of sequences of regularizations to the Heaviside function, in R-n and R-n x R, in the distributional limit sense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hill's equations-even in the linear original version are a describer of phenomenon having chaotic flavor, giving sometimes very unusual situations. The theory of the so called intervals of instability in the equation provides the precise description for most of these phenomena. Considerations on nonlinearities into the Hill's equation is a quite recent task. The linearized version for almost of these systems it reduces to the Hill's classical linear one. In this paper, some indicative facts are pointed out on the possibility of having the linear system stabilizable and/or exactly controllable. As consequence of such an approach we get results having strong classical aspects, like the one talking about location of parameters in intervals of stability. A result for nonlinear proper periodic controls, is considered too. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: comparar medidas de tamanhos dentários, suas reprodutibilidades e a aplicação da equação de regressão de Tanaka e Johnston na predição do tamanho dos caninos e pré-molares em modelos de gesso e digital. MÉTODOS: trinta modelos de gesso foram escaneados para obtenção dos modelos digitais. As medidas do comprimento mesiodistal dos dentes foram obtidas com paquímetro digital nos modelos de gesso e nos modelos digitais utilizando o software O3d (Widialabs). A somatória do tamanho dos incisivos inferiores foi utilizada para obter os valores de predição do tamanho dos pré-molares e caninos utilizando equação de regressão, e esses valores foram comparados ao tamanho real dos dentes. Os dados foram analisados estatisticamente, aplicando-se aos resultados o teste de correlação de Pearson, a fórmula de Dahlberg, o teste t pareado e a análise de variância (p < 0,05). RESULTADOS: excelente concordância intraexaminador foi observada nas medidas realizadas em ambos os modelos. O erro aleatório não esteve presente nas medidas obtidas com paquímetro, e o erro sistemático foi mais frequente no modelo digital. A previsão de espaço obtida pela aplicação da equação de regressão foi maior que a somatória dos pré-molares e caninos presentes nos modelos de gesso e nos modelos digitais. CONCLUSÃO: apesar da boa reprodutibilidade das medidas realizadas em ambos os modelos, a maioria das medidas dos modelos digitais foram superiores às do modelos de gesso. O espaço previsto foi superestimado em ambos os modelos e significativamente maior nos modelos digitais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)