991 resultados para Java programming language
Resumo:
The process of developing software that takes advantage of multiple processors is commonly referred to as parallel programming. For various reasons, this process is much harder than the sequential case. For decades, parallel programming has been a problem for a small niche only: engineers working on parallelizing mostly numerical applications in High Performance Computing. This has changed with the advent of multi-core processors in mainstream computer architectures. Parallel programming in our days becomes a problem for a much larger group of developers. The main objective of this thesis was to find ways to make parallel programming easier for them. Different aims were identified in order to reach the objective: research the state of the art of parallel programming today, improve the education of software developers about the topic, and provide programmers with powerful abstractions to make their work easier. To reach these aims, several key steps were taken. To start with, a survey was conducted among parallel programmers to find out about the state of the art. More than 250 people participated, yielding results about the parallel programming systems and languages in use, as well as about common problems with these systems. Furthermore, a study was conducted in university classes on parallel programming. It resulted in a list of frequently made mistakes that were analyzed and used to create a programmers' checklist to avoid them in the future. For programmers' education, an online resource was setup to collect experiences and knowledge in the field of parallel programming - called the Parawiki. Another key step in this direction was the creation of the Thinking Parallel weblog, where more than 50.000 readers to date have read essays on the topic. For the third aim (powerful abstractions), it was decided to concentrate on one parallel programming system: OpenMP. Its ease of use and high level of abstraction were the most important reasons for this decision. Two different research directions were pursued. The first one resulted in a parallel library called AthenaMP. It contains so-called generic components, derived from design patterns for parallel programming. These include functionality to enhance the locks provided by OpenMP, to perform operations on large amounts of data (data-parallel programming), and to enable the implementation of irregular algorithms using task pools. AthenaMP itself serves a triple role: the components are well-documented and can be used directly in programs, it enables developers to study the source code and learn from it, and it is possible for compiler writers to use it as a testing ground for their OpenMP compilers. The second research direction was targeted at changing the OpenMP specification to make the system more powerful. The main contributions here were a proposal to enable thread-cancellation and a proposal to avoid busy waiting. Both were implemented in a research compiler, shown to be useful in example applications, and proposed to the OpenMP Language Committee.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Resumo:
In this thesis, I designed and implemented a virtual machine (VM) for a monomorphic variant of Athena, a type-omega denotational proof language (DPL). This machine attempts to maintain the minimum state required to evaluate Athena phrases. This thesis also includes the design and implementation of a compiler for monomorphic Athena that compiles to the VM. Finally, it includes details on my implementation of a read-eval-print loop that glues together the VM core and the compiler to provide a full, user-accessible interface to monomorphic Athena. The Athena VM provides the same basis for DPLs that the SECD machine does for pure, functional programming and the Warren Abstract Machine does for Prolog.
Resumo:
En aquest projecte es vol implementar una llibreria en Java, que proporcioni les eines necessàries per a crear diagrames i esquemes. Es vol proporcionar a la llibreria un conjunt d’objectes bàsics, també mètodes i funcionalitats suficients per a gestionar aquests objectes. Per altra part, es vol implementar una aplicació per a dissenyar diagrames Entitat-Relació que utilitzi aquesta llibreria
Resumo:
Programming Overview The JVM (The Java Virtual Machine) A brief look at Structure Class Method Statement Magic incantations main() output Coding a Dog Programming Principle(1) If and Boolean operations Coding a Bank Account Quick look at ToolBox
Resumo:
An overview of programming and software development.
Resumo:
In this lecture we describe the structure of the Programming Principles course at Southampton, look at the definitions and paradigms of programming, and take a look ahead to the key things that we will be covering in the weeks ahead.
Resumo:
In this session we look more closely at the way that Java deals with variables, and in particular with the differences between primitives (basic types like int and char) and objects. We also take an initial look at the scoping rules in Java, which dictate the visibility of variables in your program
Resumo:
In this session we look at how to think systematically about a problem and create a solution. We look at the definition and characteristics of an algorithm, and see how through modularisation and decomposition we can then choose a set of methods to create. We also compare this somewhat procedural approach, with the way that design works in Object Oriented Systems,
Resumo:
In this session we look at how to create more powerful objects through more powerful methods. We look at parameters and call by value vs. call by reference; return types; and overloading.
Resumo:
In this session we look at the public and protected keywords, and the principle of encapsulation. We also look at how Constructors can help you initialise objects, while maintaining the encapsulation principle.
Resumo:
In this session we look at how we can use collection objects like ArrayList as a more advanced type of array. We also introduce the idea of generics (forcing a collection to hold a particular type) and see how Java handles the autoboxing and unboxing of primitives. Finally we look at Iterators, a common design pattern for dealing with iteration over a collection.
Resumo:
In this session we look at the sorts of errors that occur in programs, and how we can use different testing and debugging strategies (such as unit testing and inspection) to track them down. We also look at error handling within the program and at how we can use Exceptions to manage errors in a more sophisticated way. These slides are based on Chapter 6 of the Book 'Objects First with BlueJ'
Resumo:
In this session we look at some of the basics of good code design, including avoiding duplication and designing for loose coupling and high cohesion.
Resumo:
In this session we introduce inheritance - one of the cornerstone concepts of object oriented programming. We look at how to define super and sub-classes, how to maintain encapsulation using the super() constructor, and why it is useful to use substitution to hold references to sub-classes in references typed as their super-class.