978 resultados para Isothermal calorimetry
Resumo:
Rapport de synthèse : La consommation de boissons sucrées contenant du fructose a remarquablement augmenté ces dernières décennies et, on pense qu'elle joue un rôle important dans l'épidémie actuelle d'obésité et de troubles métaboliques. Des études faites sur des rats ont montré qu'une alimentation riche en sucre ou fructose induisait une obésité, une résistance à l'insuline, diabète, dyslipidémie et une hypertension artérielle, tandis que chez l'homme, une alimentation riche en fructose conduit, après quelques jours, au développement d'une hypertryglycémie et une résistance hépatique à l'insuline. Nous avons entrepris une étude de 7 jours d'alimentation riche en fructose ou d'une alimentation contrôlée chez six hommes en bonne santé. Les NEFA plasmatiques et la beta-hydroxybutyrate, l'oxydation nette de lipide (calorimétrie indirecte) et l'oxydation exogène de lipide (13 CO2) ont été surveillés dans des conditions basales, et après un chargement en lipide (huile d'olive marqué au 13C-trioléine), puis durant un stress mental standardisé. La clearance de lactate et les effets métaboliques de la perfusion de lactate exogène ont également été évalués. Nos résultats ont montré que l'alimentation riche en fructose diminue la concentration plasmatique de NEFA, de beta-hydroxybutyrate de même que l'oxydation des lipides dans les conditions de bases et après surcharge en lipides. De plus, l'alimentation riche en fructose amortie l'augmentation des NEFA plasmatique et l'oxydation des lipides exogènes durant le stress mental. Elle augmente également la concentration basale de lactate et la production de lactate de respectivement 31.8% et 53.8%, tandis que la clearance du lactate reste inchangée. L'injection de lactate diminue le taux des NEFA lors de l'alimentation de contrôle et l'alimentation de base, et l'oxydation nette de lipide lors de l'alimentation de contrôle et l'alimentation riche en fructose. Ces résultats indiquent que 7 jours d'alimentation riche en fructose inhibent remarquablement la lipolyse et l'oxydation des lipides. L'alimentation riche en fructose augmente aussi la production de lactate, et l'augmentation de l'utilisation de lactate peut contribuer à supprimer l'oxydation des lipides. Abstact : The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and β-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C] triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and (β-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8%, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.
Resumo:
Exocytosis from synaptic vesicles is driven by stepwise formation of a tight alpha-helical complex between the fusing membranes. The complex is composed of the three SNAREs: synaptobrevin 2, SNAP-25, and syntaxin 1a. An important step in complex formation is fast binding of vesicular synaptobrevin to the preformed syntaxin 1.SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil "trigger site." This site is also present in many synaptobrevin homologs functioning in other trafficking steps. Point mutations in this stretch inhibited binding to the syntaxin 1.SNAP-25 dimer and slowed fusion of liposomes. Moreover, the point mutations severely inhibited secretion from chromaffin cells. Altogether, this demonstrates that the trigger site in synaptobrevin is crucial for productive SNARE zippering.
Resumo:
OBJECTIVE: The aim of this study was to determine whether V˙O(2) kinetics and specifically, the time constant of transitions from rest to heavy (τ(p)H) and severe (τ(p)S) exercise intensities, are related to middle distance swimming performance. DESIGN: Fourteen highly trained male swimmers (mean ± SD: 20.5 ± 3.0 yr; 75.4 ± 12.4 kg; 1.80 ± 0.07 m) performed an discontinuous incremental test, as well as square wave transitions for heavy and severe swimming intensities, to determine V˙O(2) kinetics parameters using two exponential functions. METHODS: All the tests involved front-crawl swimming with breath-by-breath analysis using the Aquatrainer swimming snorkel. Endurance performance was recorded as the time taken to complete a 400 m freestyle swim within an official competition (T400), one month from the date of the other tests. RESULTS: T400 (Mean ± SD) (251.4 ± 12.4 s) was significantly correlated with τ(p)H (15.8 ± 4.8s; r=0.62; p=0.02) and τ(p)S (15.8 ± 4.7s; r=0.61; p=0.02). The best single predictor of 400 m freestyle time, out of the variables that were assessed, was the velocity at V˙O(2max)vV˙O(2max), which accounted for 80% of the variation in performance between swimmers. However, τ(p)H and V˙O(2max) were also found to influence the prediction of T400 when they were included in a regression model that involved respiratory parameters only. CONCLUSIONS: Faster kinetics during the primary phase of the V˙O(2) response is associated with better performance during middle-distance swimming. However, vV˙O(2max) appears to be a better predictor of T400.
Resumo:
BACKGROUND: Obesity is becoming more frequent in children; understanding the extent to which this condition affects not only carbohydrate and lipid metabolism but also protein metabolism is of paramount importance. OBJECTIVE: We evaluated the kinetics of protein metabolism in obese, prepubertal children in the static phase of obesity. DESIGN: In this cross-sectional study, 9 obese children (x +/- SE: 44+/-4 kg, 30.9+/-1.5% body fat) were compared with 8 lean (28+/-2 kg ,16.8+/-1.2% body fat), age-matched (8.5+/-0.2 y) control children. Whole-body nitrogen flux, protein synthesis, and protein breakdown were calculated postprandially over 9 h from 15N abundance in urinary ammonia by using a single oral dose of [15N]glycine; resting energy expenditure (REE) was assessed by indirect calorimetry (canopy) and body composition by multiple skinfold-thickness measurements. RESULTS: Absolute rates of protein synthesis and breakdown were significantly greater in obese children than in control children (x +/- SE: 208+/-24 compared with 137+/-14 g/d, P < 0.05, and 149+/-20 compared with 89+/-13 g/d, P < 0.05, respectively). When these variables were adjusted for fat-free mass by analysis of covariance, however, the differences between groups disappeared. There was a significant relation between protein synthesis and fat-free mass (r = 0.83, P < 0.001) as well as between protein synthesis and REE (r = 0.79, P < 0.005). CONCLUSIONS: Obesity in prepubertal children is associated with an absolute increase in whole-body protein turnover that is consistent with an absolute increase in fat-free mass, both of which contribute to explaining the greater absolute REE in obese children than in control children.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
PURPOSE: Poly(epsilon-caprolactone) (PCL) is a biodegradable and biocompatible polymer that presents a very low degradation rate, making it suitable for the development of long-term drug delivery systems. The objective of this pilot study is to evaluate the feasibility and characteristics of PCL devices in the prolonged and controlled intravitreous release of dexamethasone. METHODS: The in vitro release of dexamethasone was investigated and the implant degradation was monitored by the percent of mass loss and by changes in the surface morphology. Differential scanning calorimetry was used to evaluate stability and interaction of the implant and the drug. The short-term tolerance of the implants was studied after intravitreous implantation in rabbit eye. Results: PCL implant allows for a controlled and prolonged delivery of dexamethasone since it releases 25% of the drug in 21 weeks. Its low degradation rate was confirmed by the mass loss and scanning electron microscopy studies. Preliminary observations show that PCL intravitreous implants are very well tolerated in the rabbit eye. CONCLUSION: This study demonstrates the PCL drug delivery systems allowed to a prolonged release of dexamethasone in vitro. The implants demonstrated a strikingly good intraocular short-term tolerance in rabbits eyes. The in vitro and preliminary in vivo studies tend to show that PCL implants could be of interest when long-term sustained intraocular delivery of corticosteroids is required.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.
Resumo:
Fat balance plays an important role in fat mass regulation. The mechanisms by which fat intake and fat oxidation are controlled are poorly understood. In particular, no data are available on the origin, i.e. exogenous (meal intake) or endogenous (adipose tissue lipolysis), of fat oxidized during the postprandial period in children and the proportion between these two components. In this study we tested the hypothesis that there is a relationship between adiposity and the oxidative fate of fat taken with a mixed meal in a group of 15 children with a wide range of fat mass (9-64%). The combination of stable isotope analysis ([13C] enriched fatty acids added to a mixed meal) and indirect calorimetry allowed us to differentiate between the exogenous and endogenous resting fat oxidation rate over the 9-h postprandial period. During the 9 hours of the postprandial period, the children oxidized an amount of fat comparable to that ingested with the meal [26.8 (+/-2.31) g vs. 26.4 (+/-2.3) g, respectively, P = ns]. On average, exogenous fat oxidation [2.99 (+/-3.0) g/9 h] represented 10.8% (+/-0.9) of total fat oxidation. Endogenous fat oxidation, calculated as the difference between total fat oxidation and exogenous fat oxidation, averaged 23.4 (+/-1.9) g/9 h and represented 88.2% (+/-0.9) of total fat oxidation. Endogenous fat oxidation as well as exogenous fat oxidation were highly correlated to total fat oxidation (r = 0.83, P < 0.001; r = 0.84, P < 0.001, respectively). Exogenous fat oxidation expressed as a proportion of total fat oxidation was directly related to fat mass (r = 0.56, P < 0.03), while endogenous fat oxidation expressed as a proportion of total fat oxidation was inversely related (r = -0.57, P < 0.03) to the degree of adiposity. The enhanced exogenous fat oxidation observed when adiposity increases in the dynamic phase of obesity may be viewed as a protective mechanism to prevent further increase in fat mass and hence to maintain fat oxidation at a sufficient rate when the body is exposed to a high amount of dietary fat, as typically encountered in obese children.
Resumo:
The resting metabolic rate (RMR) and body composition of 130 obese and nonobese prepubertal children, aged 6 to 10 years, were assessed by indirect calorimetry and skin-fold thickness, respectively. The mean (+/- SD) RMR was 4619 +/- 449 kJ.day-1 (164 +/- 31 kJ.kg body weight-1 x day-1) in the 62 boys and 4449 +/- 520 kJ.day-1 (147 +/- 32 kJ.kg body weight-1 x day-1) in the 68 girls. Fat-free mass was the best single predictor of RMR (R2 = 0.64; p < 0.001). Step-down multiple regression analysis, with independent variables such as age, gender, weight, and height, allowed several RMR predictive equations to be developed. An equation for boys is as follows: RMR (kJ.day-1) = 1287 + 28.6 x Weight(kg) + 23.6 x Height(cm) - 69.1 x Age(yr) (R2 = 0.58; p < 0.001). An equation for girls is as follows: RMR (kJ.day-1 = 1552 + 35.8 x Weight (kg) + 15.6 x Height (cm) - 36.3 x Age (yr) (R2 = 0.69; p < 0.001). Comparison between the measured RMR and that predicted by currently used formulas showed that most of these equations tended to overestimate the RMR of both genders, especially in overweight children.
Resumo:
The aim of this single-blind, placebo-controlled study was to investigate the effects of the new beta-adrenergic compound Ro 40-2148 on resting energy expenditure (REE) at rest and after an oral glucose load in non-diabetic obese women before and after two weeks of treatment. After one week of placebo administration and after an overnight fast and one hour rest, REE and glucose and lipid oxidation rates were measured by indirect calorimetry (hood system) before and for 6 h after a single dose of placebo solution. A 75 g oral glucose tolerance test (OGTT) was performed during this period starting 90 min after the placebo administration. During the following two weeks, using a randomization design, six patients received Ro 40-2148 at a dose of 400 mg diluted in 100 ml water twice a day (i.e. 800 mg per day), while six others continued with the placebo administration. The same tests and measurements were repeated after two weeks, except for the treatment group which received the drug instead of the placebo. The 14-day period of drug administration did not increase REE measured in post-absorptive conditions. Similarly, there was no acute effect on REE of a 400 mg dose of Ro 40-2148. In contrast, glucose-induced thermogenesis was significantly increased after two weeks in the treatment group (means +/- s.e.m.: 3.7 +/- 1.3%, P = 0.047), while no change was observed in the placebo group (-0.8 +/- 0.7%, not significant). Since there was no significant change in the respiratory quotient, the increase in energy expenditure observed in the treatment group was due to stimulation of both lipid and glucose oxidation. The drug induced no variations in heart rate, blood pressure, axillary temperature or in plasma glucose, insulin and free fatty acid levels. In conclusion, this study shows that Ro 40-2148 activates glucose-induced thermogenesis in obese non-diabetic patients.
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
The thermogenic response induced by ethanol ingestion in humans has not been extensively studied. This study was designed to determine the thermic effect of ethanol added to a normal diet in healthy nonalcoholic subjects, using indirect calorimetry measurements over a 24-h period in a respiration chamber. The thermic effect of ethanol was also measured when ethanol was ingested in the fasting state, using a ventilated hood system during a 5-h period. Six subjects ingested 95.6 +/- 1.8 (SE) g ethanol in 1 day partitioned over three meals; there was a 5.5 +/- 1.2% increase in 24-h energy expenditure compared with a control day in which all conditions were identical except that no ethanol was consumed. The calculated ethanol-induced thermogenesis (EIT) was 22.5 +/- 4.7% of the ethanol energy ingested. Ingestion of 31.9 +/- 0.6 g ethanol in the fasting state led to a 7.4 +/- 0.6% increase in energy expenditure over baseline values, and the calculated EIT was 17.1 +/- 2.2%. It is concluded that in healthy nonalcoholic adults ethanol elicits a thermogenic response equal to approximately 20% of the ethanol energy. Thus the concept of the apparently inefficient utilization of ethanol energy is supported by these results which show that only approximately 80% of the ethanol energy is used as metabolizable energy for biochemical processes in healthy nonalcoholic moderate ethanol consumers.
Resumo:
The magnitude of variability in resting energy expenditure (REE) during the day was assessed in nine healthy young subjects under two nutritional conditions: 1) mixed nutrient (53% carbohydrate, 30% fat, 17% protein) enteral feeding at an energy level corresponding to 1.44 REE; and 2) enteral fasting, with only water allowed. In each subject, six 30-min measurements of REE were performed using indirect calorimetry (hood system) at 90-min intervals from 9 AM to 5 PM. The mean REE and respiratory quotient were significantly (p less than .01) greater during feeding than during fasting (1.08 +/- 0.07 [SEM] vs. 1.00 +/- 0.06 kcal/min and 0.874 +/- 0.007 vs. 0.829 +/- 0.008 kcal/min, respectively). Mean postprandial thermogenesis was 4.9 +/- 0.4% of metabolizable energy administered. The intraindividual variability of REE throughout the day, expressed as the coefficient of variation, ranged from 0.7% to 2.0% in the fasting condition and from 1.2% to 4.1% in the feeding condition. There was no significant difference between the REE measured in the morning and that determined in the afternoon.
Resumo:
Background: Bacteria form biofilms on the surface of orthopaedic devices, causing persistent infections. Monitoring biofilm formation on bone grafts and bone substitutes is challenging due to heterogeneous surface characteristics. We analyzed various bone grafts and bone substitutes regarding their propensity for in-vitro biofilm formation caused by S. aureus and S. epidermidis. Methods: Beta-tricalciumphosphate (b-TCP, ChronOsTM), processed human spongiosa (TutoplastTM) and PMMA (PalacosTM) were investigated. PE was added as a growth control. As test strains S. aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) were used. Test materials were incubated with 105 cfu/ml. After 24 h, test materials were removed and washed, followed by a standardised sonication protocol. The resulting sonication fluid was plated and bacterial counts were enumerated and expressed as cfu/sample. Sonicated samples were transferred to a microcalorimeter (TA Instrument) and heat flow monitored over a 24 h period with a precision of 0.0001°C and a sensitiviy of 200 μW. Experiments were performed in triplicates to calculate the mean ± SD. One-way ANOVA analysis was used for statistical analysis. Results: Bacterial counts (log10 cfu/sample) were highest on b-TCP (S. aureus 7.67 ± 0.17; S. epidermidis 8.14 ± 0.05) while bacterial density (log10 cfu/surface) was highest on PMMA (S. aureus 6.12 ± 0.2, S. epidermidis 7.65 ± 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (b-TCP and Tutoplast, p <0.001) compared to the smooth materials (PMMA and PE) with no differences between b-TCP and TutoplastTM (p >0.05) or PMMA and PE (p >0.05). In contrast, for S. epidermidis biofilms the detection time was different (p <0.001) between all materials except between Tutoplast and PE (p >0.05). Conclusion: Our results demonstrate biofilm formation with both strains on all tested materials. Microcalorimetry was able to detect quantitatively the amount of biofilm. Further studies are needed to see whether calorimetry is a suitable tool also to monitor approaches to prevent and treat infections associated with bone grafts and bone substitutes.