817 resultados para Intrusion Detection, Computer Security, Misuse
Resumo:
Ensuring the security of corporate information, that is increasingly stored, processed and disseminated using information and communications technologies [ICTs], has become an extremely complex and challenging activity. This is a particularly important concern for knowledge-intensive organisations, such as universities, as the effective conduct of their core teaching and research activities is becoming ever more reliant on the availability, integrity and accuracy of computer-based information resources. One increasingly important mechanism for reducing the occurrence of security breaches, and in so doing, protecting corporate information, is through the formulation and application of a formal information security policy (InSPy). Whilst a great deal has now been written about the importance and role of the information security policy, and approaches to its formulation and dissemination, there is relatively little empirical material that explicitly addresses the structure or content of security policies. The broad aim of the study, reported in this paper, is to fill this gap in the literature by critically examining the structure and content of authentic information security policies, rather than simply making general prescriptions about what they ought to contain. Having established the structure and key features of the reviewed policies, the paper critically explores the underlying conceptualisation of information security embedded in the policies. There are two important conclusions to be drawn from this study: (1) the wide diversity of disparate policies and standards in use is unlikely to foster a coherent approach to security management; and (2) the range of specific issues explicitly covered in university policies is surprisingly low, and reflects a highly techno-centric view of information security management.
Resumo:
We introduce ReDites, a system for realtime event detection, tracking, monitoring and visualisation. It is designed to assist Information Analysts in understanding and exploring complex events as they unfold in the world. Events are automatically detected from the Twitter stream. Then those that are categorised as being security-relevant are tracked, geolocated, summarised and visualised for the end-user. Furthermore, the system tracks changes in emotions over events, signalling possible flashpoints or abatement. We demonstrate the capabilities of ReDites using an extended use case from the September 2013 Westgate shooting incident. Through an evaluation of system latencies, we also show that enriched events are made available for users to explore within seconds of that event occurring.
Resumo:
In this paper a novel method for an application of digital image processing, Edge Detection is developed. The contemporary Fuzzy logic, a key concept of artificial intelligence helps to implement the fuzzy relative pixel value algorithms and helps to find and highlight all the edges associated with an image by checking the relative pixel values and thus provides an algorithm to abridge the concepts of digital image processing and artificial intelligence. Exhaustive scanning of an image using the windowing technique takes place which is subjected to a set of fuzzy conditions for the comparison of pixel values with adjacent pixels to check the pixel magnitude gradient in the window. After the testing of fuzzy conditions the appropriate values are allocated to the pixels in the window under testing to provide an image highlighted with all the associated edges.
Resumo:
Евгений Николов, Димитрина Полимирова - Докладът представя текущото състояние на “облачните изчисления” и “облачните информационни атаки” в светлината на компютърната вирусология и информационната сигурност. Обсъдени са категориите “облачни възможни информационни атаки” и “облачни успешни информационни атаки”. Коментирана е архитектурата на “облачните изчисления” и основните компоненти, които изграждат тяхната инфраструктура, съответно “клиенти” (“clients”), „центрове за съхранение на данни“ (“datacenters”) и „разпределени сървъри“ (“dirstributed servers”). Коментирани са и услугите, които се предлагат от “облачните изчисления” – SaaS, HaaS и PaaS. Посочени са предимствата и недостатъците на компонентите и услугите по отношение на “облачните информационни атаки”. Направен е анализ на текущото състояние на “облачните информационни атаки” на територията на България, Балканския полуостров и Югоизточна Европа по отношение на компонентите и на услугите. Резултатите са представени под формата на 3D графични обекти. На края са направени съответните изводи и препоръки под формата на заключение.
Resumo:
Most research in the area of emotion detection in written text focused on detecting explicit expressions of emotions in text. In this paper, we present a rule-based pipeline approach for detecting implicit emotions in written text without emotion-bearing words based on the OCC Model. We have evaluated our approach on three different datasets with five emotion categories. Our results show that the proposed approach outperforms the lexicon matching method consistently across all the three datasets by a large margin of 17–30% in F-measure and gives competitive performance compared to a supervised classifier. In particular, when dealing with formal text which follows grammatical rules strictly, our approach gives an average F-measure of 82.7% on “Happy”, “Angry-Disgust” and “Sad”, even outperforming the supervised baseline by nearly 17% in F-measure. Our preliminary results show the feasibility of the approach for the task of implicit emotion detection in written text.
Resumo:
Mediation techniques provide interoperability and support integrated query processing among heterogeneous databases. While such techniques help data sharing among different sources, they increase the risk for data security, such as violating access control rules. Successful protection of information by an effective access control mechanism is a basic requirement for interoperation among heterogeneous data sources. ^ This dissertation first identified the challenges in the mediation system in order to achieve both interoperability and security in the interconnected and collaborative computing environment, which includes: (1) context-awareness, (2) semantic heterogeneity, and (3) multiple security policy specification. Currently few existing approaches address all three security challenges in mediation system. This dissertation provides a modeling and architectural solution to the problem of mediation security that addresses the aforementioned security challenges. A context-aware flexible authorization framework was developed in the dissertation to deal with security challenges faced by mediation system. The authorization framework consists of two major tasks, specifying security policies and enforcing security policies. Firstly, the security policy specification provides a generic and extensible method to model the security policies with respect to the challenges posed by the mediation system. The security policies in this study are specified by 5-tuples followed by a series of authorization constraints, which are identified based on the relationship of the different security components in the mediation system. Two essential features of mediation systems, i. e., relationship among authorization components and interoperability among heterogeneous data sources, are the focus of this investigation. Secondly, this dissertation supports effective access control on mediation systems while providing uniform access for heterogeneous data sources. The dynamic security constraints are handled in the authorization phase instead of the authentication phase, thus the maintenance cost of security specification can be reduced compared with related solutions. ^
Resumo:
Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
Fast spreading unknown viruses have caused major damage on computer systems upon their initial release. Current detection methods have lacked capabilities to detect unknown viruses quickly enough to avoid mass spreading and damage. This dissertation has presented a behavior based approach to detecting known and unknown viruses based on their attempt to replicate. Replication is the qualifying fundamental characteristic of a virus and is consistently present in all viruses making this approach applicable to viruses belonging to many classes and executing under several conditions. A form of replication called self-reference replication, (SR-replication), has been formalized as one main type of replication which specifically replicates by modifying or creating other files on a system to include the virus itself. This replication type was used to detect viruses attempting replication by referencing themselves which is a necessary step to successfully replicate files. The approach does not require a priori knowledge about known viruses. Detection was accomplished at runtime by monitoring currently executing processes attempting to replicate. Two implementation prototypes of the detection approach called SRRAT were created and tested on the Microsoft Windows operating systems focusing on the tracking of user mode Win32 API system calls and Kernel mode system services. The research results showed SR-replication capable of distinguishing between file infecting viruses and benign processes with little or no false positives and false negatives. ^
Resumo:
With the recent explosion in the complexity and amount of digital multimedia data, there has been a huge impact on the operations of various organizations in distinct areas, such as government services, education, medical care, business, entertainment, etc. To satisfy the growing demand of multimedia data management systems, an integrated framework called DIMUSE is proposed and deployed for distributed multimedia applications to offer a full scope of multimedia related tools and provide appealing experiences for the users. This research mainly focuses on video database modeling and retrieval by addressing a set of core challenges. First, a comprehensive multimedia database modeling mechanism called Hierarchical Markov Model Mediator (HMMM) is proposed to model high dimensional media data including video objects, low-level visual/audio features, as well as historical access patterns and frequencies. The associated retrieval and ranking algorithms are designed to support not only the general queries, but also the complicated temporal event pattern queries. Second, system training and learning methodologies are incorporated such that user interests are mined efficiently to improve the retrieval performance. Third, video clustering techniques are proposed to continuously increase the searching speed and accuracy by architecting a more efficient multimedia database structure. A distributed video management and retrieval system is designed and implemented to demonstrate the overall performance. The proposed approach is further customized for a mobile-based video retrieval system to solve the perception subjectivity issue by considering individual user's profile. Moreover, to deal with security and privacy issues and concerns in distributed multimedia applications, DIMUSE also incorporates a practical framework called SMARXO, which supports multilevel multimedia security control. SMARXO efficiently combines role-based access control (RBAC), XML and object-relational database management system (ORDBMS) to achieve the target of proficient security control. A distributed multimedia management system named DMMManager (Distributed MultiMedia Manager) is developed with the proposed framework DEMUR; to support multimedia capturing, analysis, retrieval, authoring and presentation in one single framework.
Resumo:
Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^
Resumo:
This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other.^
Resumo:
The purpose of this research is design considerations for environmental monitoring platforms for the detection of hazardous materials using System-on-a-Chip (SoC) design. Design considerations focus on improving key areas such as: (1) sampling methodology; (2) context awareness; and (3) sensor placement. These design considerations for environmental monitoring platforms using wireless sensor networks (WSN) is applied to the detection of methylmercury (MeHg) and environmental parameters affecting its formation (methylation) and deformation (demethylation). ^ The sampling methodology investigates a proof-of-concept for the monitoring of MeHg using three primary components: (1) chemical derivatization; (2) preconcentration using the purge-and-trap (P&T) method; and (3) sensing using Quartz Crystal Microbalance (QCM) sensors. This study focuses on the measurement of inorganic mercury (Hg) (e.g., Hg2+) and applies lessons learned to organic Hg (e.g., MeHg) detection. ^ Context awareness of a WSN and sampling strategies is enhanced by using spatial analysis techniques, namely geostatistical analysis (i.e., classical variography and ordinary point kriging), to help predict the phenomena of interest in unmonitored locations (i.e., locations without sensors). This aids in making more informed decisions on control of the WSN (e.g., communications strategy, power management, resource allocation, sampling rate and strategy, etc.). This methodology improves the precision of controllability by adding potentially significant information of unmonitored locations.^ There are two types of sensors that are investigated in this study for near-optimal placement in a WSN: (1) environmental (e.g., humidity, moisture, temperature, etc.) and (2) visual (e.g., camera) sensors. The near-optimal placement of environmental sensors is found utilizing a strategy which minimizes the variance of spatial analysis based on randomly chosen points representing the sensor locations. Spatial analysis is employed using geostatistical analysis and optimization occurs with Monte Carlo analysis. Visual sensor placement is accomplished for omnidirectional cameras operating in a WSN using an optimal placement metric (OPM) which is calculated for each grid point based on line-of-site (LOS) in a defined number of directions where known obstacles are taken into consideration. Optimal areas of camera placement are determined based on areas generating the largest OPMs. Statistical analysis is examined by using Monte Carlo analysis with varying number of obstacles and cameras in a defined space. ^
Resumo:
In his study - File Control: The Heart Of Business Computer Management - William G. O'Brien, Assistant Professor, The School of Hospitality Management at Florida International University, initially informs you: “Even though computers are an everyday part of the hospitality industry, many managers lack the knowledge and experience to control and protect the files in these systems. The author offers guidelines which can minimize or prevent damage to the business as a whole.” Our author initially opens this study with some anecdotal instances illustrating the failure of hospitality managers to exercise due caution with regard to computer supported information systems inside their restaurants and hotels. “Of the three components that make up any business computer system (data files, programs, and hard-ware), it is files that are most important, perhaps irreplaceable, to the business,” O’Brien informs you. O’Brien breaks down the noun, files, into two distinct categories. They are, the files of extrinsic value, and its counterpart the files of intrinsic value. An example of extrinsic value files would be a restaurant’s wine inventory. “As sales are made and new shipments are received, the computer updates the file,” says O’Brien. “This information might come directly from a point-of-sale terminal or might be entered manually by an employee,” he further explains. On the intrinsic side of the equation, O’Brien wants you to know that the information itself is the valuable part of this type of file. Its value is over and above the file’s informational purpose as a pragmatic business tool, as it is in inventory control. “The information is money in the legal sense For instance, figures moved about in banking system computers do not represent dollars; they are dollars,” O’Brien explains. “If the record of a dollar amount is erased from all computer files, then that money ceases to exist,” he warns. This type of information can also be bought and sold, such as it is in customer lists to advertisers. Files must be protected O’Brien stresses. “File security requires a systematic approach,” he discloses. O’Brien goes on to explain important elements to consider when evaluating file information. File back-up is also an important factor to think about, along with file storage/safety concerns. “Sooner or later, every property will have its fire, flood, careless mistake, or disgruntled employee,” O’Brien closes. “…good file control can minimize or prevent damage to the business as a whole.”
Resumo:
This paper deals with finding the maximum number of security policies without conflicts. By doing so we can remove security loophole that causes security violation. We present the problem of maximum compatible security policy and its relationship to the problem of maximum acyclic subgraph, which is proved to be NP-hard. Then we present a polynomial-time approximation algorithm and show that our result has approximation ratio for any integer with complexity .