933 resultados para Inhibitory activity
Resumo:
Adoptive T cell therapy using antigen-specific T lymphocytes is a powerful immunotherapeutic approach against cancer. Nevertheless, many T cells against tumor-antigens exhibit only weak anti-tumoral response. To overcome this barrier it is necessary to improve the potency and anti-tumoral efficacy of these T cells. Activation and activity of T cells are tightly controlled to inhibit unwanted T cell responses and to reduce the risk of autoimmunity. Both are regulated by extrinsic signals and intrinsic mechanisms which suppress T cell activation. The intrinsic mechanisms include the expression of phosphatases that counteract the activation-inducing kinases. Modifying the expression of these phosphatases allows the targeted modulation of T cell reactivity. MicroRNAs (miRNAs) are regulatory small noncoding RNA molecules that control gene expression by targeting messenger RNAs in a sequence specific manner. Gene-specific silencing plays a key role in diverse biological processes, such as development, differentiation, and functionality. miR181a has been shown to be highly expressed in immature T cells that recognize low-affinity antigens.rnThe present study successfully shows that ectopic expression of miR181a is able to enhance the sensitivity of both murine and human T cells. In CD4+ T helper cells as well as in CD8+ cytotoxic T cells the overexpression of miR181a leads to downregulation of multiple phosphatases involved in the T cell receptor signaling pathway. Overexpression of miR181a in human T cells achieves a co-stimulatory independent activation and has an anti-apoptotic effect on CD4+ T helper cells. Additionally, increasing the amount of miR181a enhances the cytolytic activity of murine CD8+ TCRtg T cells in an antigen-specific manner.rnTo test miR181a overexpressing T cells in vivo, a mouse tumor model using a B cell lymphoma cell line (A20-HA) expressing the Influenza hemagglutinin (Infl.-HA) antigen was established. The expression of model antigens in tumor cell lines enables targeted elimination of tumors using TCRtg T cells. The transfer of miR181a overexpressing Infl.-HA TCRtg CD8+ T cells alone has no positive effect neither on tumor control nor on survival of A20-HA tumor-bearing mice. In contrast, the co-transfer of miR181a overexpressing Infl.-HA TCRtg CD8+ and CD4+ T cells leads to improved tumor control and prolongs survival of A20-HA tumor-bearing mice. This effect is characterized by higher amounts of effector T cells and the expansion of Infl.-HA TCRtg CD8+ T cells.rnAll effects were achieved by changes in expression of several genes including molecules involved in T cell differentiation, activation, and regulation, cytotoxic effector molecules, and receptors important for the homing process of T cells in miR181a overexpressing T cells. The present study demonstrates that miR181a is able to enhance the anti-tumoral response of antigen-specific T cells and is a promising candidate for improving adoptive cell therapy.
Resumo:
Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.
Resumo:
Plasmodium cysteine proteases are essential for host-cell invasion and egress, hemoglobin degradation, and intracellular development of the parasite. The temporal, site-specific regulation of cysteine-protease activity is a prerequisite for survival and propagation of Plasmodium. Recently, a new family of inhibitors of cysteine proteases (ICPs) with homologs in at least eight Plasmodium species has been identified. Here, we report the 2.6 A X-ray crystal structure of the C-terminal, inhibitory domain of ICP from P. berghei (PbICP-C) in a 1:1 complex with falcipain-2, an important hemoglobinase of Plasmodium. The structure establishes Plasmodium ICP as a member of the I42 class of chagasin-like protease inhibitors but with large insertions and differences in the binding mode relative to other family members. Furthermore, the PbICP-C structure explains why host-cell cathepsin B-like proteases and, most likely, also the protease-like domain of Plasmodium SERA5 (serine-repeat antigen 5) are no targets for ICP.
Resumo:
Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.
Resumo:
Endothelial dysfunction precedes hypertension and atherosclerosis and predicts cardiac allograft vasculopathy and death in heart transplant recipients. Endothelial overproduction of reactive oxygen species, such as superoxide anions produced by NAD(P)H oxidase, induces endothelial dysfunction. Because immunosuppressive drugs have been associated with increased reactive oxygen species production and endothelial dysfunction, we sought to elucidate the underlying mechanisms. Reactive oxygen species, release of superoxide anions, and NAD(P)H oxidase activity were studied in human umbilical vein endothelial cells and in polymorphonuclear neutrophils. Gp91ds-tat was used to specifically block NAD(P)H oxidase. Transcriptional activation of different subunits of NAD(P)H oxidase was assessed by real-time RT-PCR. Rac1 subunit translocation and activation were studied by membrane fractionation and pull-down assays. Calcineurin inhibitors significantly increased endothelial superoxide anions production because of NAD(P)H oxidase, whereas mycophenolate acid (MPA) blocked it. MPA also attenuated the respiratory burst induced by neutrophil NAD(P)H oxidase. Because transcriptional activation of NAD(P)H oxidase was not affected, but addition of guanosine restored endothelial superoxide anions formation after MPA treatment, we speculate that the inhibitory effect of MPA was mediated by depletion of cellular guanosine triphosphate content. This prevented activation of Rac1 and, thus, of endothelial NAD(P)H oxidase. Because all heart transplant recipients are at risk for cardiac allograft vasculopathy development, these differential effects of immunosuppressants on endothelial oxidative stress should be considered in the choice of immunosuppressive drugs.
Resumo:
Previous studies could demonstrate, that the naturally occuring polyphenol resveratrol inhibits cell growth of colon carcinoma cells at least in part by inhibition of protooncogene ornithine decarboxylase (ODC). The objective of this study was to provide several lines of evidence suggesting that the induction of ceramide synthesis is involved in this regulatory mechanisms. Cell growth was determined by BrdU incorporation and crystal violet staining. Ceramide concentrations were detected by HPLC-coupled mass-spectrometry. Protein levels were examined by Western blot analysis. ODC activity was assayed radiometrically measuring [(14)CO(2)]-liberation. A dominant-negative PPARgamma mutant was transfected in Caco-2 cells to suppress PPARgamma-mediated functions. Antiproliferative effects of resveratrol closely correlate with a dose-dependent increase of endogenous ceramides (p<0.001). Compared to controls the cell-permeable ceramide analogues C2- and C6-ceramide significantly inhibit ODC-activity (p<0.001) in colorectal cancer cells. C6-ceramide further diminished protein levels of protooncogenes c-myc (p<0.05) and ODC (p<0.01), which is strictly related to the ability of ceramides to inhibit cell growth in a time- and dose-dependent manner. These results were further confirmed using inhibitors of sphingolipid metabolism, where only co-incubation with a serine palmitoyltransferase (SPT) inhibitor could significantly counteract resveratrol-mediated actions. These data suggest that the induction of ceramide de novo biosynthesis but not hydrolysis of sphingomyelin is involved in resveratrol-mediated inhibition of ODC. In contrast to the regulation of catabolic spermidine/spermine acetyltransferase by resveratrol, inhibitory effects on ODC occur PPARgamma-independently, indicating independent pathways of resveratrol-action. Due to our findings resveratrol could show great chemopreventive and therapeutic potential in the treatment of colorectal cancers.
Resumo:
An estimated 2%-3% of the world's population is chronically infected with hepatitis C virus (HCV) and this is a major cause of liver disease worldwide. Following acute infection, outcome is variable with acute HCV successfully resolved in some individuals (20%-30%), but in the majority of cases the virus is able to persist. Co-infection with human immunodeficiency virus has been associated with a negative impact on the course of HCV infection. The host's immune response is an important correlate of HCV infection outcome and disease progression. Natural killer (NK) cells provide a major component of the antiviral immune response by recognising and killing virally infected cells. NK cells modulate their activity through a combination of inhibitory and activatory receptors such as the killer immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen (HLA) Class I molecules. In this workshop component, we addressed the influence of KIR genotypes and their HLA ligands on resolving HCV infection and we discuss the implications of the results of the study of Lopez-Vazquez et al. on KIR and HCV disease progression.
Resumo:
The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.
Resumo:
The epithelial calcium channel TRPV6 is upregulated in breast carcinoma compared with normal mammary gland tissue. The selective estrogen receptor modulator tamoxifen is widely used in breast cancer therapy. Previously, we showed that tamoxifen inhibits calcium uptake in TRPV6-transfected Xenopus oocytes. In this study, we examined the effect of tamoxifen on TRPV6 function and intracellular calcium homeostasis in MCF-7 breast cancer cells transiently transfected with EYFP-C1-TRPV6. TRPV6 activity was measured with fluorescence microscopy using Fura-2. The basal calcium level was higher in transfected cells compared with nontransfected cells in calcium-containing solution but not in nominally calcium-free buffer. Basal influxes of calcium and barium were also increased. In transfected cells, 10 mumol/L tamoxifen reduced the basal intracellular calcium concentration to the basal calcium level of nontransfected cells. Tamoxifen decreased the transport rates of calcium and barium in transfected cells by 50%. This inhibitory effect was not blocked by the estrogen receptor antagonist, ICI 182,720. Similarly, a tamoxifen-induced inhibitory effect was also observed in MDA-MB-231 estrogen receptor-negative cells. The effect of tamoxifen was completely blocked by activation of protein kinase C. Inhibiting protein kinase C with calphostin C decreased TRPV6 activity but did not alter the effect of tamoxifen. These findings illustrate how tamoxifen might be effective in estrogen receptor-negative breast carcinomas and suggest that the therapeutic effect of tamoxifen and protein kinase C inhibitors used in breast cancer therapy might involve TRPV6-mediated calcium entry. This study highlights a possible role of TRPV6 as therapeutic target in breast cancer therapy.
Resumo:
Enamel matrix derivative (EMD), an extract of fetal porcine enamel, and TGF-β can both suppress adipogenic differentiation. However, there have been no studies that functionally link the role of EMD and TGF-β in vitro. Herein, we examined whether TGF-β signaling contributes to EMD-induced suppression of adipogenic differentiation. Adipogenesis was studied with 3T3-L1 preadipocytes in the presence of SB431542, an inhibitor of TGF-βRI kinase activity. SB431542 reversed the inhibitory effect of EMD on adipogenic differentiation, based on Oil Red O staining and mRNA expression of lipid regulated genes. SB431542 also reduced EMD-stimulated expression of connective tissue growth factor (CTGF), an autocrine inhibitor of adipogenic differentiation. Moreover, short interfering (si)RNAs for CTGF partially reversed the EMD-induced suppression of lipid regulated genes. We conclude that the TGF-βRI - CTGF axis is involved in the anti-adipogenic effects of EMD in vitro.
Resumo:
The activity of moxifloxacin was compared with ofloxacin and doxycycline against bacteria associated with periodontitis within a biofilm (single strain and mixed population) in vitro. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of moxifloxacin, ofloxacin and doxycyline were determined against single strains and mixed populations in a planktonic state. Single-species biofilms of two Porphyromonas gingivalis and two Aggregatibacter actinomycetemcomitans strains and a multi-species biofilm consisting of 12 species were formed for 3 days. The minimal biofilm eradication concentrations (MBECs) were determined after exposing the biofilms to the antibacterials (0.002 - 512 µg ml-1) for 18 h, addition of nutrient broth for 3 days and subsequent subcultivation. Photographs were taken by using confocal laser scanning microscopy and scanning electron microscopy. The MICs and MBCs did not differ between ofloxacin and moxifloxacin against A. actinomycetemcomitans, moxifloxacin was more active than the other tested antibacterials against anaerobes and the mixed population. The single-species biofilms were eradicated by moderate concentrations of the antibacterials, the lowest MBECs were always found for moxifloxacin (2-8 µg ml-1). MBECs against the multi-species biofilms were 128 µg ml-1, >512 µg ml-1 and >512 µg ml-1 for moxifloxacin, ofloxacin and doxycycline, respectively. In summary, moxifloxacin in a topical formulation may have potential as an adjunct to mechanical removal of the biofilms.
Resumo:
The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices. We found that specific activity patterns in the postsynaptic TC cell induced inhibitory long-term potentiation (iLTP). This iLTP was non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsynaptic burst activity alone. iLTP required postsynaptic dendritic Ca2+ influx evoked by low-threshold Ca2+ spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (−50 mV), which suppressed these low-threshold Ca2+ spikes, induced no plasticity. The postsynaptic dendritic Ca2+ increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expression of iLTP. The dependence of iLTP on the membrane potential and therefore on the postsynaptic discharge mode suggests that this form of iLTP might occur during sleep, when TC cells discharge in bursts. Therefore, iLTP might be involved in sleep state-dependent modulation of thalamic information processing and thalamic oscillations.
Resumo:
The Bcr-Abl fusion oncogene which resulted from a balanced reciprocal translocation between chromosome 9 and 22, t(9;22)(q11, q34), encodes a 210 KD elevated tyrosine specific protein kinase that is found in more than 95 percent of chronic myelogenous leukemia patients (CML). Increase of level of phosphorylation of tyrosine is observed on cell cycle regulatory proteins in cells overexpressing the Bcr-Abl oncogene, which activates multiple signaling pathways. In addition, distinct signals are required for transforming susceptible fibroblast and hematopoietic cells, and the minimal signals essential for transforming hematopoietic cells are yet to be defined. In the present study, we first established a tetracycline repressible p210$\rm\sp{bcr-abl}$ expression system in a murine myeloid cell line 32D c13, which depends on IL3 to grow in the presence of tetracycline and proliferate independent of IL3 in the absence of tetracycline. Interestingly, one of these sublines does not form tumors in athymic nude mice suggesting that these cells may not be completely transformed. These cells also exhibit a dose-dependent growth and expression of p210$\rm\sp{bcr-abl}$ at varying concentrations of tetracycline in the culture. However, p210$\rm\sp{bcr-abl}$ rescues IL3 deprivation induced apoptosis in a non-dose dependent fashion. DNA genotoxic damage induced by gamma-irradiation activates c-Abl tyrosine kinase, the cellular homologue of p210$\rm\sp{bcr-abl},$ and leads to activation of p38 MAP kinase in the cells. However, in the presence of p210$\rm\sp{bcr-abl}$ the irradiation failed to activate the p38 MAP kinase as examined by an antibody against phosphorylated p38 MAP kinase. Similarly, an altered tyrosine phosphorylation of the JAK1-STAT1 pathways was identified in cells constitutively overexpressing p210$\rm\sp{bcr-abl}.$ This may provided a molecular mechanism for altered therapeutic response of CML patients to IFN-$\alpha.$^ Bcr-Abl oncoprotein has multiple functional domains which have been identified by the work of others. The Bcr tetramerization domain, which may function to stabilize the association of the Bcr-Abl with actin filaments in p210$\rm\sp{bcr-abl}$ susceptible cells, are essential for transforming both fibroblast and hematopoietic cells. We designed a transcription unit encoding first 160 amino acids polypeptide of Bcr protein to test if this polypeptide can inhibit the transforming activity of the p210$\rm\sp{bcr-abl}$ oncoprotein in the 32D c13 cells. When this vector was transfected transiently along with the p210$\rm\sp{bcr-abl}$ expression vector, it can block the transforming activity of p210$\rm\sp{bcr-abl}.$ On the other hand, the retinoblastoma tumor suppressor protein (Rb), a naturally occurring negative regulator of the c-Abl kinase, the cellular homologue of Bcr-Abl oncoprotein, binds to and inhibits the c-Abl kinase in a cell cycle dependent manner. A polypeptide obtained from the carboxyl terminal end of the retinoblastoma tumor suppressor protein, in which the nuclear localization signal was mutated, was used to inhibit the kinase activity of the p210$\rm\sp{bcr-abl}$ in the cytoplasm. This polypeptide, called Rb MC-box, and its wild type form, Rb C-box, when overexpressed in the 32D cells are mainly localized in the cytoplasm. Cotransfection of a plasmid transcription unit coding for this polypeptide and the gene for the p210$\rm\sp{bcr-abl}$ resulted in reduced plating efficiency of p210$\rm\sp{bcr-abl}$ transfected IL3 independent 32D cells. Together, these results may lead to a molecular approach to therapy of CML and an in vitro assay system to identify new targets to which an inhibitory polypeptide transcription unit may be directed. ^
Resumo:
The capacity to inhibit inappropriate responses is crucial for goal-directed behavior. Inhibiting such responses seems to come more easily to some of us than others, however. From where do these individual differences originate? Here, we measured 263 participants' neural baseline activation using resting electroencephalogram. Then, we used this stable neural marker to predict a reliable electrophysiological index of response inhibition capacity in the cued Continuous Performance Test, the NoGo-Anteriorization (NGA). Using a source-localization technique, we found that resting delta, theta, and alpha1 activity in the left middle frontal gyrus and resting alpha1 activity in the right inferior frontal gyrus were negatively correlated with the NGA. As a larger NGA is thought to represent better response inhibition capacity, our findings demonstrate that lower levels of resting slow-wave oscillations in the lateral prefrontal cortex, bilaterally, are associated with a better response inhibition capacity.
Resumo:
New therapeutic strategies are needed to combat the emergence of infections due to multidrug-resistant Neisseria gonorrhoeae (Ng). In this study, fosfomycin (FOS) was tested against 89 Ng using the Etest method and showing MIC50/90s of only 8/16 μg/ml (range ≤ 1-32 μg/ml). FOS in combination with ceftriaxone (CRO) or azithromycin (AZT) was then evaluated using the checkerboard method for eight strains, including F89 (CRO-resistant) and AZT-HLR (high-level AZT-resistant). All combinations including FOS gave indifferent effects (fractional inhibitory concentration [FIC] index values between 1.2-2.3 for FOS plus CRO and between 1.8-3.2 for FOS plus AZT). Time-kill experiments for FOS, CRO, AZT and their combinations (at concentrations of 0.5×, 1×, 2× and 4× MIC) were performed against ATCC 49226, one Ng of NG-MAST ST1407, F89 and AZT-HLR. For all strains, at 24 hours results indicated that: i) FOS was bactericidal at 2× MIC concentrations but after >24 hours there was re-growth of bacteria; ii) CRO was bactericidal at 0.5× MIC; iii) AZT was bactericidal at 4× MIC; iv) CRO plus AZT was less bactericidal than CRO alone; v) FOS plus AZT was bactericidal at 2× MIC; vi) CRO plus AZT and FOS plus CRO were both bactericidal at 0.5× MIC, but the latter had more rapid effects. FOS is appealing for the management of Ng infections because of its single and oral formulation. However, our results suggest its use in combination with CRO. This strategy could, after appropriate clinical trials, be implemented for the treatment of infections due to isolates possessing resistance to CRO and/or AZT.