901 resultados para Information Retrieval, Weblogs, Decision Support
Resumo:
Pós-graduação em Educação - FFC
Resumo:
Pós-graduação em Televisão Digital: Informação e Conhecimento - FAAC
Resumo:
Factors influencing the location decisions of offices include traffic, accessibility, employment conditions, economic prospects and land-use policies. Hence tools for supporting real-estate managers and urban planners in such multidimensional decisions may be useful. Accordingly, the objective of this study is to develop a GIS-based tool to support firms who seek office accommodation within a given regional or national study area. The tool relies on a matching approach, in which a firm's characteristics (demand) on the one hand, and environmental conditions and available office spaces (supply) on the other, are analyzed separately in a first step, after which a match is sought. That is, a suitability score is obtained for every firm and for every available office space by applying some value judgments (satisfaction, utility etc.). The latter are powered by a focus on location aspects and expert knowledge about the location decisions of firms/organizations with respect to office accommodation as acquired from a group of real-estate advisers; it is stored in decision tables, and they constitute the core of the model. Apart from the delineation of choice sets for any firm seeking a location, the tool supports two additional types of queries. Firstly, it supports the more generic problem of optimally allocating firms to a set of vacant locations. Secondly, the tool allows users to find firms which meet the characteristics of any given location. Moreover, as a GIS-based tool, its results can be visualized using GIS features which, in turn, facilitate several types of analyses.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
XML similarity evaluation has become a central issue in the database and information communities, its applications ranging over document clustering, version control, data integration and ranked retrieval. Various algorithms for comparing hierarchically structured data, XML documents in particular, have been proposed in the literature. Most of them make use of techniques for finding the edit distance between tree structures, XML documents being commonly modeled as Ordered Labeled Trees. Yet, a thorough investigation of current approaches led us to identify several similarity aspects, i.e., sub-tree related structural and semantic similarities, which are not sufficiently addressed while comparing XML documents. In this paper, we provide an integrated and fine-grained comparison framework to deal with both structural and semantic similarities in XML documents (detecting the occurrences and repetitions of structurally and semantically similar sub-trees), and to allow the end-user to adjust the comparison process according to her requirements. Our framework consists of four main modules for (i) discovering the structural commonalities between sub-trees, (ii) identifying sub-tree semantic resemblances, (iii) computing tree-based edit operations costs, and (iv) computing tree edit distance. Experimental results demonstrate higher comparison accuracy with respect to alternative methods, while timing experiments reflect the impact of semantic similarity on overall system performance.
Resumo:
The studies in the present thesis focus on post-decision processes using the theoretical framework of Differentiation and Consolidation Theory. This thesis consists of three studies. In all these studies, pre-decision evaluations are compared with post-decision evaluations in order to explore differences in evaluations of decision alternatives before and after a decision. The main aim of the studies was to describe and gain a clearer and better understanding of how people re-evaluate information, following a decision for which they have experienced the decision and outcome. The studies examine how the attractiveness evaluations of important attributes are restructured from the pre-decision to the post-decision phase; particularly restructuring processes of value conflicts. Value conflict attributes are those in which information speaks against the chosen alternative in a decision. The first study investigates an important real-life decision and illustrates different post-decision (consolidation) processes following the decision. The second study tests whether decisions with value conflicts follow the same consolidation (post-decision restructuring) processes when the conflict is controlled experimentally, as in earlier studies of less controlled real-life decisions. The third study investigates consolidation and value conflicts in decisions in which the consequences are controlled and of different magnitudes. The studies in the present thesis have shown how attractiveness restructuring of attributes in conflict occurs in the post-decision phase. Results from the three studies indicated that attractiveness restructuring of attributes in conflict was stronger for important real-life decisions (Study 1) and in situations in which real consequences followed a decision (Study 3) than in more controlled, hypothetical decision situations (Study 2). Finally, some proposals for future research are suggested, including studies of the effects of outcomes and consequences on consolidation of prior decisions and how a decision maker’s involvement affects his or her pre- and post-decision processes.
Resumo:
The hydrologic risk (and the hydro-geologic one, closely related to it) is, and has always been, a very relevant issue, due to the severe consequences that may be provoked by a flooding or by waters in general in terms of human and economic losses. Floods are natural phenomena, often catastrophic, and cannot be avoided, but their damages can be reduced if they are predicted sufficiently in advance. For this reason, the flood forecasting plays an essential role in the hydro-geological and hydrological risk prevention. Thanks to the development of sophisticated meteorological, hydrologic and hydraulic models, in recent decades the flood forecasting has made a significant progress, nonetheless, models are imperfect, which means that we are still left with a residual uncertainty on what will actually happen. In this thesis, this type of uncertainty is what will be discussed and analyzed. In operational problems, it is possible to affirm that the ultimate aim of forecasting systems is not to reproduce the river behavior, but this is only a means through which reducing the uncertainty associated to what will happen as a consequence of a precipitation event. In other words, the main objective is to assess whether or not preventive interventions should be adopted and which operational strategy may represent the best option. The main problem for a decision maker is to interpret model results and translate them into an effective intervention strategy. To make this possible, it is necessary to clearly define what is meant by uncertainty, since in the literature confusion is often made on this issue. Therefore, the first objective of this thesis is to clarify this concept, starting with a key question: should be the choice of the intervention strategy to adopt based on the evaluation of the model prediction based on its ability to represent the reality or on the evaluation of what actually will happen on the basis of the information given by the model forecast? Once the previous idea is made unambiguous, the other main concern of this work is to develope a tool that can provide an effective decision support, making possible doing objective and realistic risk evaluations. In particular, such tool should be able to provide an uncertainty assessment as accurate as possible. This means primarily three things: it must be able to correctly combine all the available deterministic forecasts, it must assess the probability distribution of the predicted quantity and it must quantify the flooding probability. Furthermore, given that the time to implement prevention strategies is often limited, the flooding probability will have to be linked to the time of occurrence. For this reason, it is necessary to quantify the flooding probability within a horizon time related to that required to implement the intervention strategy and it is also necessary to assess the probability of the flooding time.
Resumo:
In der hier vorliegenden Arbeit wurde am Beispiel der Kraut- und Knollenfäule an Kartoffeln Phytophthora infestans und des Kartoffelkäfers Leptinotarsa decemlineata untersucht, ob durch den Einsatz von Geographischen Informationssystemen (GIS) landwirtschaftliche Schader¬reger¬prognosen für jeden beliebigen Kartoffelschlag in Deutschland erstellt werden können. Um dieses Ziel zu erreichen, wurden die Eingangsparameter (Temperatur und relative Luftfeuchte) der Prognosemodelle für die beiden Schaderreger (SIMLEP1, SIMPHYT1, SIMPHYT3 and SIMBLIGHT1) so aufbereitet, dass Wetterdaten flächendeckend für Deutschland zur Verfügung standen. Bevor jedoch interpoliert werden konnte, wurde eine Regionalisierung von Deutschland in Interpolationszonen durchgeführt und somit Naturräume geschaffen, die einen Vergleich und eine Bewertung der in ihnen liegenden Wetterstationen zulassen. Hierzu wurden die Boden-Klima-Regionen von SCHULZKE und KAULE (2000) modifiziert, an das Wetterstationsnetz angepasst und mit 5 bis 10 km breiten Pufferzonen an der Grenze der Interpolationszonen versehen, um die Wetterstationen so häufig wie möglich verwenden zu können. Für die Interpolation der Wetterdaten wurde das Verfahren der multiplen Regression gewählt, weil dieses im Vergleich zu anderen Verfahren die geringsten Abweichungen zwischen interpolierten und gemessenen Daten aufwies und den technischen Anforderungen am besten entsprach. Für 99 % aller Werte konnten bei der Temperaturberechnung Abweichungen in einem Bereich zwischen -2,5 und 2,5 °C erzielt werden. Bei der Berechnung der relativen Luftfeuchte wurden Abweichungen zwischen -12 und 10 % relativer Luftfeuchte erreicht. Die Mittelwerte der Abweichungen lagen bei der Temperatur bei 0,1 °C und bei der relativen Luftfeuchte bei -1,8 %. Zur Überprüfung der Trefferquoten der Modelle beim Betrieb mit interpolierten Wetterdaten wurden Felderhebungsdaten aus den Jahren 2000 bis 2007 zum Erstauftreten der Kraut- und Knollenfäule sowie des Kartoffelkäfers verwendet. Dabei konnten mit interpolierten Wetterdaten die gleichen und auch höhere Trefferquoten erreicht werden, als mit der bisherigen Berechnungsmethode. Beispielsweise erzielte die Berechnung des Erstauftretens von P. infestans durch das Modell SIMBLIGHT1 mit interpolierten Wetterdaten im Schnitt drei Tage geringere Abweichungen im Vergleich zu den Berechnungen ohne GIS. Um die Auswirkungen interpretieren zu können, die durch Abweichungen der Temperatur und der relativen Luftfeuchte entstanden wurde zusätzlich eine Sensitivitätsanalyse zur Temperatur und relativen Luftfeuchte der verwendeten Prognosemodelle durchgeführt. Die Temperatur hatte bei allen Modellen nur einen geringen Einfluss auf das Prognoseergebnis. Veränderungen der relativen Luftfeuchte haben sich dagegen deutlich stärker ausgewirkt. So lag bei SIMBLIGHT1 die Abweichung durch eine stündliche Veränderung der relativen Luftfeuchte (± 6 %) bei maximal 27 Tagen, wogegen stündliche Veränderungen der Temperatur (± 2 °C) eine Abweichung von maximal 10 Tagen ausmachten. Die Ergebnisse dieser Arbeit zeigen, dass durch die Verwendung von GIS mindestens die gleichen und auch höhere Trefferquoten bei Schaderregerprognosen erzielt werden als mit der bisherigen Verwendung von Daten einer nahegelegenen Wetterstation. Die Ergebnisse stellen einen wesentlichen Fortschritt für die landwirtschaftlichen Schaderregerprognosen dar. Erstmals ist es möglich, bundesweite Prognosen für jeden beliebigen Kartoffelschlag zur Bekämpfung von Schädlingen in der Landwirtschaft bereit zu stellen.
Resumo:
Im Rahmen der interdisziplinären Zusammenarbeit zur Durchsetzung des »Menschenrecht Gesundheit« wurde ein geomedizinisches Informationssystem erstellt, das auf die nordexponierten Bergdörfer zwischen 350 m ü. NN und 450 m ü. NN des Kabupaten Sikka auf der Insel Flores in Indonesien anwendbar ist. Es wurde eine Analyse der Zeit-Raum-Dimension der Gesundheitssituation in Wololuma und Napun Lawan - exemplarisch für die nordexponierten Bergdörfer - durchgeführt. Im Untersuchungsraum wurden Gesundheitsgefahren und Gesundheitsrisiken analysiert, Zonen der Gefahren herausgearbeitet und Risikoräume bewertet. Trotz eines El Niño-Jahres waren prinzipielle Bezüge der Krankheiten zum jahreszeitlichen Rhythmus der wechselfeuchten Tropen zu erkennen. Ausgehend von der Vermutung, dass Krankheiten mit spezifischen Klimaelementen korrelieren, wurden Zusammenhänge gesucht. Für jede Krankheit wurden Makro-, Meso- und Mikrorisikoräume ermittelt. Somit wurden Krankheitsherde lokalisiert. Die Generalisierung des geomedizinischen Informationssystems lässt sich auf der Makroebene auf die nordexponierten Bergdörfer zwischen 350 m ü. NN und 450 m ü. NN des Kabupaten Sikka übertragen. Aus einer Vielzahl von angetroffenen Krankheiten wurden sechs Krankheiten selektiert. Aufgrund der Häufigkeitszahlen ergibt sich für das Gesundheitsrisiko der Bevölkerung eine Prioritätenliste:rn- Dermatomykosen (ganzjährig)rn- Typhus (ganzjährig)rn- Infektionen der unteren Atemwege (Übergangszeit)rn- Infektionen der oberen Atemwege (Übergangszeit)rn- Malaria (Regenzeit)rn- Struma (ganzjährig)rnDie Hauptrisikogruppe der Makroebene ist die feminine Bevölkerung. Betroffen sind weibliche Kleinkinder von null bis sechs Jahren und Frauen ab 41 Jahren. Die erstellten Karten des zeitlichen und räumlichen Verbreitungsmusters der Krankheiten und des Zugangs zu Gesundheitsdienstleistungen dienen Entscheidungsträgern als Entscheidungshilfe für den Einsatz der Mittel zur Primärprävention. Die Geographie als Wissenschaft mit ihren Methoden und dem Zeit-Raum-Modell hat gezeigt, dass sie die Basis für die interdisziplinäre Forschung darstellt. Die interdisziplinäre Zusammenarbeit zur Gesundheitsforschung im Untersuchungszeitraum 2009 hat sich bewährt und muss weiter ausgebaut werden. Die vorgeschlagenen Lösungsmöglichkeiten dienen der Minimierung des Gesundheitsrisikos und der Gesundheitsvorsorge. Da die Systemzusammenhänge der Ätiologie der einzelnen Krankheiten sehr komplex sind, besteht noch immer sehr großer Forschungsbedarf. rnDas Ergebnis der vorliegenden Untersuchung zeigt, dass Wasser in jeder Form die primäre Ursache für das Gesundheitsrisiko der Bergdörfer im Kabupaten Sikka auf der Insel Flores in Indonesien ist.rnDer Zugang zu Wasser ist unerlässlich für die Verwirklichung des »Menschenrecht Gesundheit«. Das Recht auf Wasser besagt, dass jeder Mensch Zugang zu nicht gesundheitsgefährdendem, ausreichendem und bezahlbarem Wasser haben soll. Alle Staaten dieser Erde sollten sich dieser Forderung verpflichtet fühlen.rn
Resumo:
Many of developing countries are facing crisis in water management due to increasing of population, water scarcity, water contaminations and effects of world economic crisis. Water distribution systems in developing countries are facing many challenges of efficient repair and rehabilitation since the information of water network is very limited, which makes the rehabilitation assessment plans very difficult. Sufficient information with high technology in developed countries makes the assessment for rehabilitation easy. Developing countries have many difficulties to assess the water network causing system failure, deterioration of mains and bad water quality in the network due to pipe corrosion and deterioration. The limited information brought into focus the urgent need to develop economical assessment for rehabilitation of water distribution systems adapted to water utilities. Gaza Strip is subject to a first case study, suffering from severe shortage in the water supply and environmental problems and contamination of underground water resources. This research focuses on improvement of water supply network to reduce the water losses in water network based on limited database using techniques of ArcGIS and commercial water network software (WaterCAD). A new approach for rehabilitation water pipes has been presented in Gaza city case study. Integrated rehabilitation assessment model has been developed for rehabilitation water pipes including three components; hydraulic assessment model, Physical assessment model and Structural assessment model. WaterCAD model has been developed with integrated in ArcGIS to produce the hydraulic assessment model for water network. The model have been designed based on pipe condition assessment with 100 score points as a maximum points for pipe condition. As results from this model, we can indicate that 40% of water pipeline have score points less than 50 points and about 10% of total pipes length have less than 30 score points. By using this model, the rehabilitation plans for each region in Gaza city can be achieved based on available budget and condition of pipes. The second case study is Kuala Lumpur Case from semi-developed countries, which has been used to develop an approach to improve the water network under crucial conditions using, advanced statistical and GIS techniques. Kuala Lumpur (KL) has water losses about 40% and high failure rate, which make severe problem. This case can represent cases in South Asia countries. Kuala Lumpur faced big challenges to reduce the water losses in water network during last 5 years. One of these challenges is high deterioration of asbestos cement (AC) pipes. They need to replace more than 6500 km of AC pipes, which need a huge budget to be achieved. Asbestos cement is subject to deterioration due to various chemical processes that either leach out the cement material or penetrate the concrete to form products that weaken the cement matrix. This case presents an approach for geo-statistical model for modelling pipe failures in a water distribution network. Database of Syabas Company (Kuala Lumpur water company) has been used in developing the model. The statistical models have been calibrated, verified and used to predict failures for both networks and individual pipes. The mathematical formulation developed for failure frequency in Kuala Lumpur was based on different pipeline characteristics, reflecting several factors such as pipe diameter, length, pressure and failure history. Generalized linear model have been applied to predict pipe failures based on District Meter Zone (DMZ) and individual pipe levels. Based on Kuala Lumpur case study, several outputs and implications have been achieved. Correlations between spatial and temporal intervals of pipe failures also have been done using ArcGIS software. Water Pipe Assessment Model (WPAM) has been developed using the analysis of historical pipe failure in Kuala Lumpur which prioritizing the pipe rehabilitation candidates based on ranking system. Frankfurt Water Network in Germany is the third main case study. This case makes an overview for Survival analysis and neural network methods used in water network. Rehabilitation strategies of water pipes have been developed for Frankfurt water network in cooperation with Mainova (Frankfurt Water Company). This thesis also presents a methodology of technical condition assessment of plastic pipes based on simple analysis. This thesis aims to make contribution to improve the prediction of pipe failures in water networks using Geographic Information System (GIS) and Decision Support System (DSS). The output from the technical condition assessment model can be used to estimate future budget needs for rehabilitation and to define pipes with high priority for replacement based on poor condition. rn
Resumo:
Il progetto di ricerca è finalizzato allo sviluppo di una metodologia innovativa di supporto decisionale nel processo di selezione tra alternative progettuali, basata su indicatori di prestazione. In particolare il lavoro si è focalizzato sulla definizione d’indicatori atti a supportare la decisione negli interventi di sbottigliamento di un impianto di processo. Sono stati sviluppati due indicatori, “bottleneck indicators”, che permettono di valutare la reale necessità dello sbottigliamento, individuando le cause che impediscono la produzione e lo sfruttamento delle apparecchiature. Questi sono stati validati attraverso l’applicazione all’analisi di un intervento su un impianto esistente e verificando che lo sfruttamento delle apparecchiature fosse correttamente individuato. Definita la necessità dell’intervento di sbottigliamento, è stato affrontato il problema della selezione tra alternative di processo possibili per realizzarlo. È stato applicato alla scelta un metodo basato su indicatori di sostenibilità che consente di confrontare le alternative considerando non solo il ritorno economico degli investimenti ma anche gli impatti su ambiente e sicurezza, e che è stato ulteriormente sviluppato in questa tesi. Sono stati definiti due indicatori, “area hazard indicators”, relativi alle emissioni fuggitive, per integrare questi aspetti nell’analisi della sostenibilità delle alternative. Per migliorare l’accuratezza nella quantificazione degli impatti è stato sviluppato un nuovo modello previsionale atto alla stima delle emissioni fuggitive di un impianto, basato unicamente sui dati disponibili in fase progettuale, che tiene conto delle tipologie di sorgenti emettitrici, dei loro meccanismi di perdita e della manutenzione. Validato mediante il confronto con dati sperimentali di un impianto produttivo, si è dimostrato che tale metodo è indispensabile per un corretto confronto delle alternative poiché i modelli esistenti sovrastimano eccessivamente le emissioni reali. Infine applicando gli indicatori ad un impianto esistente si è dimostrato che sono fondamentali per semplificare il processo decisionale, fornendo chiare e precise indicazioni impiegando un numero limitato di informazioni per ricavarle.
Resumo:
It has long been known that trypanosomes regulate mitochondrial biogenesis during the life cycle of the parasite; however, the mitochondrial protein inventory (MitoCarta) and its regulation remain unknown. We present a novel computational method for genome-wide prediction of mitochondrial proteins using a support vector machine-based classifier with approximately 90% prediction accuracy. Using this method, we predicted the mitochondrial localization of 468 proteins with high confidence and have experimentally verified the localization of a subset of these proteins. We then applied a recently developed parallel sequencing technology to determine the expression profiles and the splicing patterns of a total of 1065 predicted MitoCarta transcripts during the development of the parasite, and showed that 435 of the transcripts significantly changed their expressions while 630 remain unchanged in any of the three life stages analyzed. Furthermore, we identified 298 alternatively splicing events, a small subset of which could lead to dual localization of the corresponding proteins.
Resumo:
Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.