1000 resultados para InP material
Resumo:
A series of metamorphic high electron mobility transistors (MMHEMTs) with different V/III flux ratios are grown on GaAs (001) substrates by molecular beam epitaxy (XIBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum V/III ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm(2)/(V.s) and 3.26 x 10(12)cm(-2) respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47 As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the V/III ratio, for which the reasons are discussed.
Resumo:
Deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) have been used to investigate defects in semi-conducting and semi-insulating (SI) InP after high temperature annealing, respectively. The results indicate that the annealing in iron phosphide ambient has an obvious suppression effect of deep defects, when compared with the annealing in phosphorus ambient. A defect annihilation phenomenon has also been observed in Fe-doped SI-InP materials after annealing. Mechanism of defect formation and annihilation related to in-diffusion of iron and phosphorus is discussed. Nature of the thermally induced defects has been discussed based on the results. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Optical bistability is reported in InP/GaInAsP equilateral-triangle-resonator (ETR) microlasers, which are fabricated by planar technology. For a 30 mu m side ETR microlaser with a 2-mu m-wide output waveguide connected to one of the vertices of the ETR, hysteresis loops are observed for the output power versus the injection current from 215 to 235 K. The laser output spectra are measured in the upper and lower states of the hysteresis loop, which show strong mode competition among transverse modes. The hysteresis loops are demonstrated by two-mode rate equations with asymmetric cross gain saturation and different output efficiencies. (C) 2009 Optical Society of America
Resumo:
The authors developed an inductively coupled plasma etching process for the fabrication of hole-type photonic crystals in InP. The etching was performed at 70 degrees C using BCl3/Cl-2 chemistries. A high etch rate of 1.4 mu m/min was obtained for 200 nm diameter holes. The process also yields nearly cylindrical hole shape with a 10.8 aspect ratio and more than 85 degrees straightness of the smooth sidewall. Surface-emitting photonic crystal laser and edge emitting one were demonstrated in the experiments.
Resumo:
We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111) B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Perot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Perot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field. (C) 2009 Optical Society of America
Resumo:
The effects of growth temperature and V/III ratio on the InN initial nucleation of islands on the GaN (0 0 0 1) surface were investigated. It is found that InN nuclei density increases with decreasing growth temperature between 375 and 525 degrees C. At lower growth temperatures, InN thin films take the form of small and closely packed islands with diameters of less than 100 nm, whereas at elevated temperatures the InN islands can grow larger and well separated, approaching an equilibrium hexagonal shape due to enhanced surface diffusion of adatoms. At a given growth temperature of 500 degrees C, a controllable density and size of separated InN islands can be achieved by adjusting the V/III ratio. The larger islands lead to fewer defects when they are coalesced. Comparatively, the electrical properties of the films grown under higher V/III ratio are improved.
Resumo:
A new compact three-port InP based PD/EAM (photo-detector/electro-absorption modulator) integrated photonic switch is reported. The device demonstrates bi-directional wavelength conversion over 20 nm at 2.5 Gbit/s with a low input optical power of about 20 mW.
Resumo:
Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.
Resumo:
Self-assembled InAs quantum dots (QDs) in an InAlGaAs matrix, lattice-matched to InP substrate, have been grown by molecular beam epitaxy (MBE). Transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL) are used to study their structural and optical properties. In InAs/InAlGaAs/ InP system, we propose that when the thickness of InAs layer deposited is small, the random strain distribution of the matrix layer results in the formation of tadpole-shaped QDs with tails towards random directions, while the QDs begin to turn into dome-shaped and then coalesce to form islands with larger size and lower density to release the increasing misfit strain with the continuous deposition of InAs. XRD rocking curves showing the reduced strain with increasing thickness of InAs layer may also support our notion. The results of PL measurements are in well agreement with that of TEM images. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed in iron phosphide ambient, while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13 eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.
Resumo:
InAs self-organized nanostructures in In0.52Al0.48As matrix have been grown on InP (001) substrates by molecular beam epitaxy. The morphologies of the nanostructures are found to be strongly dependent on the growth rate of the InAs layer. By increasing the growth rate from 0.005 to 0.35 ML/s, the morphology of the nanostructure changes from wire to elongated dot and then changes back to wire again. Polarized photoluminescence of the InAs quantum wires and quantum dots are performed at 77 K, which are characterized by strong optical anisotropies. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Undoped, S-doped and Fe-doped InP crystals with diameter up to 4-inch have been pulled in drop 10 0 drop -direction under P-rich condition by a rapid P-injection in situ synthesis liquid encapsulated Czochralski (LEC) method. High speed photoluminescence mapping, etch-pit density (EPD) mapping and scanning electron microscopy have been used to characterize the samples of the single crystal ingots. Dislocations and electrical homogeneity of these samples are investigated and compared. By controlling the thermal field and the solid-liquid interface shape, 4-inch low-EPD InP single crystals have been successfully grown by the rapid P-injection synthesis LEC method. The EPD across the wafer of the ingots is less than 5 x 10(4) cm(-2). Cluster defects with a pore center are observed in the P-rich LEC grown InP ingots. These defects are distributed irregularly on a wafer and are surrounded by a high concentration of dislocations. The uniformity of the PL intensity across the wafer is influenced by these defects. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Effects of V/III ratio on heavily Si doped InGaAs and InP were studied using low pressure metalorganic chemical vapor deposition (LP-MOCVD) at a growth temperature of 550degreesC. In InGaAs, as the V/III ratio decreases from 256 to 64, the carrier concentration increases from 3.0 x 10(18) to 5.8 x 10(18) cm(-3), and the lattice mismatch of InGaAs to InP was observed to vary from -5.70 x10(-4) to 1.49 x 10(-3). In InP, when the V/III ratio decreases from 230 to 92, the same trend as that in Si doped InGaAs was observed that the carrier concentration increases from 9.2 x 10(18) to 1.3 x 10(19) cm(-3). The change of AsH3 was found to have stronger effect on Si incorporation in InGaAs at lower growth temperature than at higher growth temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present a novel growth of grade-strained bulk InGaAs/InP by linearly changing group-III TMGa source flow during low-pressure metalorganic vapor-phase epitaxy (LP-MOVPE). The high-resolution X-ray diffraction (HRXRD) measurements showed that much different strain was simultaneously introduced into the fabricated bulk InGaAs/InP by utilizing this novel growth method. We experimentally demonstrated the utility and simplicity of the growth method by fabricating common laser diodes. As a first step, under the injection current of 100 mA, a more flat gain curve which has a spectral full-width at half-maximum (FWHM) of about 120 nm was achieved by using the presented growth technique. Our experimental results show that the simple and new growth method is very suitable for fabricating broad-band semiconductor optoelectronic devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.