889 resultados para In-control
Resumo:
Ellis-van Creveld (EvC) syndrome is a human autosomal recessive disorder caused by a mutation in either the EVC or EVC2 gene, and presents with short limbs, polydactyly, and ectodermal and heart defects. The aim of this study was to understand the pathologic basis by which deletions in the EVC2 gene lead to chondrodysplastic dwarfism and to describe the morphologic, immunohistochemical, and molecular hallmarks of EvC syndrome in cattle. Five Grey Alpine calves, with a known mutation in the EVC2 gene, were autopsied. Immunohistochemistry was performed on bone using antibodies to collagen II, collagen X, sonic hedgehog, fibroblast growth factor 2, and Ki67. Reverse transcription polymerase chain reaction was performed to analyze EVC1 and EVC2 gene expression. Autopsy revealed long bones that were severely reduced in length, as well as genital and heart defects. Collagen II was detected in control calves in the resting, proliferative, and hypertrophic zones and in the primary and secondary spongiosa, with a loss of labeling in the resting zone of 2 dwarfs. Collagen X was expressed in hypertrophic zone in the controls but was absent in the EvC cases. In affected calves and controls, sonic hedgehog labeled hypertrophic chondrocytes and primary and secondary spongiosa similarly. FGF2 was expressed in chondrocytes of all growth plate zones in the control calves but was lost in most EvC cases. The Ki67 index was lower in cases compared with controls. EVC and EVC2 transcripts were detected. Our data suggest that EvC syndrome of Grey Alpine cattle is a disorder of chondrocyte differentiation, with accelerated differentiation and premature hypertrophy of chondrocytes, and could be a spontaneous model for the equivalent human disease.
Resumo:
Whereas research has demonstrated that phobic or fearful individuals overestimate the likelihood of incurring aversive consequences from an encounter with feared stimuli, it has not yet been systematically investigated whether these individuals also overestimate the likelihood (i.e., the frequency) of such encounters. In the current study, spider-fearful and control participants were presented with background information that allowed them to estimate the overall likelihood that different kinds of animals (spiders, snakes, or birds) would be encountered. Spider-fearful participants systematically overestimated the likelihood of encountering a spider with respect to the likelihood of encountering a snake or a bird. No such expectancy bias was observed in control participants. The results thus strengthen our idea that there indeed exist two different types of expectancy bias in high fear and phobia that can be related to different components of the fear response. A conscientious distinction and examination of these two types of expectancy bias are of potential interest for therapeutic applications.
Resumo:
AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.
Resumo:
BACKGROUND: Reduced sensitivity to positive feedback is common in patients with major depressive disorder (MDD). However, findings regarding negative feedback are ambiguous, with both exaggerated and blunted responses being reported. The ventral striatum (VS) plays a major role in processing valenced feedback, and previous imaging studies have shown that the locus of controls (self agency v. external agency) over the outcome influences VS response to feedback. We investigated whether attributing the outcome to one's own action or to an external agent influences feedback processing in patients with MDD. We hypothesized that depressed participants would be less sensitive to the feedback attribution reflected by an altered VS response to self-attributed gains and losses. METHODS: Using functional MRI and a motion prediction task, we investigated the neural responses to self-attributed (SA) and externally attributed (EA) monetary gains and losses in unmedicated patients with MDD and healthy controls. RESULTS: We included 21 patients and 25 controls in our study. Consistent with our prediction, healthy controls showed a VS response influenced by feedback valence and attribution, whereas in depressed patients striatal activity was modulated by valence but was insensitive to attribution. This attribution insensitivity led to an altered ventral putamen response for SA - EA losses in patients with MDD compared with healthy controls. LIMITATIONS: Depressed patients with comorbid anxiety disorder were included. CONCLUSION: These results suggest an altered assignment of motivational salience to SA losses in patients with MDD. Altered striatal response to SA negative events may reinforce the belief of not being in control of negative outcomes contributing to a cycle of learned helplessness.
Resumo:
AIMS Children conceived by assisted reproductive technology (ART) display vascular dysfunction. Its underlying mechanism, potential reversibility and long-term consequences for cardiovascular risk are unknown. In mice, ART induces arterial hypertension and shortens the life span. These problems are related to decreased vascular endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. The aim of this study was to determine whether ART-induced vascular dysfunction in humans is related to a similar mechanism and potentially reversible. To this end we tested whether antioxidants improve endothelial function by scavenging free radicals and increasing NO bioavailability. METHODS AND RESULTS In this prospective double-blind placebo controlled study in 21 ART and 21 control children we assessed the effects of a four-week oral supplementation with antioxidant vitamins C (1 g) and E (400 IU) or placebo (allocation ratio 2:1) on flow-mediated vasodilation (FMD) of the brachial artery and pulmonary artery pressure (echocardiography) during high-altitude exposure (3454 m), a manoeuver known to facilitate the detection of pulmonary vascular dysfunction and to decrease NO bioavailability by stimulating oxidative stress. Antioxidant supplementation significantly increased plasma NO measured by ozone-based chemiluminescence (from 21.7 ± 7.9 to 26.9 ± 7.6 µM, p = 0.04) and FMD (from 7.0 ± 2.1 to 8.7 ± 2.0%, p = 0.004) and attenuated altitude-induced pulmonary hypertension (from 33 ± 8 to 28 ± 6 mm Hg, p = 0.028) in ART children, whereas it had no detectable effect in control children. CONCLUSIONS Antioxidant administration to ART children improved NO bioavailability and vascular responsiveness in the systemic and pulmonary circulation. Collectively, these findings indicate that in young individuals ART-induced vascular dysfunction is subject to redox regulation and reversible.
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
The coding sequence of the wild-type, cys-sensitive, cysE gene from Escherichia coli, which encodes an enzyme of the cysteine biosynthetic pathway, namely serine acetyltransferase (SAT, EC 2.3.1.30), was introduced into the genome of potato plants under the control of the cauliflower mosaic virus 35S promoter. In order to target the protein into the chloroplast, cysE was translationally fused to the 5′-signal sequence of rbcS from Arabidopsis thaliana. Transgenic plants showed a high accumulation of the cysE mRNA. The chloroplastic localisation of the E. coli SAT protein was demonstrated by determination of enzymatic activities in enriched organelle fractions. Crude leaf extracts of these plants exhibited up to 20-fold higher SAT activity than those prepared from wild-type plants. The transgenic potato plants expressing the E. coli gene showed not only increased levels of enzyme activity but also exhibited elevated levels of cysteine and glutathione in leaves. Both were up to twofold higher than in control plants. However, the thiol content in tubers of transgenic lines was unaffected. The alterations observed in leaf tissue had no effect on the expression of O-acetylserine(thiol)-lyase, the enzyme which converts O-acetylserine, the product of SAT, to cysteine. Only a minor effect on its enzymatic activity was observed. In conclusion, the results presented here demonstrate the importance of SAT in plant cysteine biosynthesis and show that production of cysteine and related sulfur-containing compounds can be enhanced by metabolic engineering.
Resumo:
Cirrhosis is a frequent and severe disease, complicated by renal sodium retention leading to ascites and oedema. A better understanding of the complex mechanisms responsible for renal sodium handling could improve clinical management of sodium retention. Our aim was to determine the importance of the amiloride-sensitive epithelial sodium channel (ENaC) in collecting ducts in compensate and decompensate cirrhosis. Bile duct ligation was performed in control mice (CTL) and collecting duct-specific αENaC knockout (KO) mice, and ascites development, aldosterone plasma concentration, urinary sodium/potassium ratio and sodium transporter expression were compared. Disruption of ENaC in collecting ducts (CDs) did not alter ascites development, urinary sodium/potassium ratio, plasma aldosterone concentrations or Na,K-ATPase abundance in CCDs. Total αENaC abundance in whole kidney increased in cirrhotic mice of both genotypes and cleaved forms of α and γ ENaC increased only in ascitic mice of both genotypes. The sodium chloride cotransporter (NCC) abundance was lower in non-ascitic KO, compared to non-ascitic CTL, and increased when ascites appeared. In ascitic mice, the lack of αENaC in CDs induced an upregulation of total ENaC and NCC and correlated with the cleavage of ENaC subunits. This revealed compensatory mechanisms which could also take place when treating the patients with diuretics. These compensatory mechanisms should be considered for future development of therapeutic strategies.
Resumo:
After intestinal bypass, the mucosa of the in-continuity segment (ICS) of intestine undergoes adaptive hyperplasia which results in increased absorptive function per length of intestine. In the present study, 70% of the small intestine was bypassed in rats to determine if intestinal muscle also adapts after bypass. To determine the effect of bypass on intestinal transit, a poorly absorbed marker substance was introduced into the orad portion of the ICS or bypassed loop (BL). Significantly less marker (P < 0.05) was passed from the ICS into the colon in 50 minutes in fed rats at 14 days compared to at 3 days after bypass. In 150 minutes there was more marker in the colon of fed rats at 3 and 14 days but not at 35 days after bypass than in control. In the BL, transit was slowed significantly in fed rats at 3 and 35 days and in fasted rats at 3 days but not 35 days after bypass compared to control. The circular muscle from the BL and the distal but not proximal portion of the ICS developed significantly more carbachol-stimulated force in vitro at 35 but not 3 days after bypass compared to unoperated but not sham-operated controls. At 35 days after bypass, the muscle layers had a greater muscle wet weight and protein content compared to both unoperated and sham-operated control in both the proximal and distal portions of the ICS. Similarly, there was more muscle in histological sections of the BL and distal portion of the ICS at 35 days after bypass compared to either control. Nonetheless, at 35 days after bypass actomyosin content as a fraction of muscle weight or total protein content was not different from control. The results support the hypothesis that there was a functional adaptation, i.e. slowed transit in fed rats that allowed more time for absorption. Feeding caused slowed transit in the BL as well as the ICS. Other results suggest that an increased amount of functional muscle formed in the distal portion of the ICS after bypass. ^
Resumo:
Embryonic stem cells (ESCs) possess two unique characteristics: infinite self-renewal and the potential to differentiate into almost every cell type (pluripotency). Recently, global expression analyses of metastatic breast and lung cancers revealed an ESC-like expression program or signature, specifically for cancers that are mutant for p53 function. Surprisingly, although p53 is widely recognized as the guardian of the genome, due to its roles in cell cycle checkpoints, programmed cell death or senescence, relatively little is known about p53 functions in normal cells, especially in ESCs. My hypothesis is that p53 has specific transcription regulatory functions in human ESCs (hESCs) that a) oppose pluripotency and b) protect the stem cell genome in response to DNA damage and stress signaling. In mouse ESCs, these roles are believed to coincide, as p53 promotes differentiation in response to DNA damage, but this is unexplored in hESCs. To determine the biological roles of p53, specifically in hESCs, we mapped genome-wide chromatin interactions of p53 by chromatin immunoprecipitation and massively parallel tag sequencing (ChIP-Seq), and did so under three VIdifferent conditions of hESC status: pluripotency, differentiation-initiated and DNA-damage-induced. ChIP-Seq showed that p53 is enriched at distinct, induction-specific gene loci during each of these different conditions. Microarray gene expression analysis and functional annotation of the distinct p53-target genes revealed that p53 regulates specific genes encoding developmental regulators, which are expressed in differentiation-initiated but not DNA- damaged hESCs. We further discovered that, in response to differentiation signaling, p53 binds regions of chromatin that are repressed but also poised for rapid activation by core pluripotency factors OCT4 and NANOG in pluripotent hESCs. In response to DNA damage, genes associated with migration and motility are targeted by p53; whereas, the prime targets of p53 in control of cell death are conserved for p53 regulation in both differentiation and DNA damage. Our genome-wide profiling and bioinformatics analyses show that p53 occupies a special set of developmental regulatory genes during early differentiation of hESCs and functions in an induction-specific manner. In conclusion, our research unveiled previously unknown functions of p53 in ESC biology, which augments our understanding of one of the most deregulated proteins in human cancers.
Resumo:
To assess the effect of deregulated Ha-ras and bcl-2, individually and in combination on epidermal keratinocyte homeostasis and during multistep skin carcinogenesis, we generated skin-specific transgenic mice and keratinocyte transfectants constitutively expressing oncogenic Ha-ras and bcl-2 proteins. The deregulated Ha-ras and bcl-2 expression contributing to homeostatic imbalances in the skin had an additive effect on the probability of tumor development. They were also cooperative in incidence, growth, and latency of tumor formation, and they exhibited synergistic cooperation in malignant transformation of benign papillomas. To explain the homeostatic imbalances by Ha-ras and bcl-2 overexpression in the skin, we investigated the three major cellular processes of proliferation, cell death, and differentiation. Epidermal expression of Bcl-2 retarded keratinocyte proliferation in the epidermis of neonatal mice compared with results for control littermates. Constitutive expression of Ha-ras increased keratinocyte proliferation, and co-expression of bcl-2 modestly suppressed the ras-mediated abnormal proliferation of neonatal keratinocytes. Bcl-2 proteins in keratinocytes protected UV-treated cells from apoptotic cell death regardless of oncogenic ras expression in both non-neoplastic neonatal epidermis and human keratinocyte cell lines. The spontaneous apoptotic index (AI) was also lower in papillomas constitutively expressing bcl-2 compared with the ones that developed in control mice. Ras-overexpressing epidermis, including that in ras/bcl-2 double transgenic mice, had abnormal differentiation patterns compared with controls. The oncogenic ras protein had alterations in both epidermal distribution and the extent of cytokeratin 14 and involucrin expression. Abnormal expression of the hyperproliferation marker cytokeratin 6 and modest down regulation of cytokeratin 1 were also detected. Late appearance of filaggrin was another abnormal phenotype of the ras-expressing epidermis. Overexpression of bcl-2 had no effect on epidermal differentiation. Together, these findings suggest that constitutive expression of oncogenic Ha-ras and bcl-2 are important determinants of epidermal proliferation, viability and differentiation. In summary, our results demonstrated that the disruption of epidermal homeostasis by overexpressed ras and bcl-2 predisposes to hyperplastic growth of the epidermis and to papilloma development and that these proteins with distinct mechanisms for oncogenesis are functionally synergistic for malignant transformation of chemically induced skin carcinogenesis. ^
Resumo:
The average surface pH of the ocean is dropping at a rapid rate due to the dissolution of anthropogenic CO2, raising concerns for marine life. Additionally, some coastal areas periodically experience upwelling of CO2-enriched water with reduced pH. Previous research has demonstrated ocean acidification (OA)-induced changes in behavioural and sensory systems including olfaction, which is due to altered function of neural gamma-aminobutyric acid type A (GABAA) receptors. Here, we used a camera-based tracking software system to examine whether OA-dependent changes in GABAA receptors affect anxiety in juvenile Californian rockfish (Sebastes diploproa). Anxiety was estimated using behavioural tests that measure light/dark preference (scototaxis) and proximity to an object. After one week in OA conditions projected for the next century in the California shore (1125 ± 100 µatm, pH 7.75), anxiety was significantly increased relative to controls (483 ± 40 µatm CO2, pH 8.1). The GABAA-receptor agonist muscimol, but not the antagonist gabazine, caused a significant increase in anxiety consistent with altered Cl- flux in OA-exposed fish. OA-exposed fish remained more anxious even after 7 days back in control seawater; however, they resumed their normal behaviour by day 12. These results show that OA could severely alter rockfish behaviour; however, this effect is reversible.
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
In the year 1999 approves the Law of Construction Building (LOE, in Spanish) to regulate a sector such as construction, which contained some shortcomings from the legal point of view. Currently, the LOE has been in force 12 years, changing the spanish world of the construction, due to influenced by internationalization. Within the LOE, there regulating the different actors involved in the construction building, as the Projects design, the Director of Construction, the developer, The builder, Director of execution of the construction (actor only in Spain, similar as construcion engineer and abroad in), control entities and the users, but lacks figure Project manager will assume the delegation of the promoter helping and you organize, direct and management the process. This figure assumes that the market and contracts are not legally regulated in Spain, then should define and establish its regulation in the LOE. (Spain Construction Law) The translation in spanish of the words "Project Manager is owed to Professor Rafael de Heredia in his book Integrated Project Management, as agent acting on behalf of the organization and promoter assuming control of the project, ie Integraded Project Management . Already exist in Spain, AEDIP (Spanish Association Integrated of Project Construction management) which comprises the major companies in “Project Management” in Spain, and MeDIP (Master in Integrated Construction Project) the largest and most advanced studies at the Polytechnic University of Madrid, in "Construction Project Management" they teach which is also in Argentina. The Integrated Project ("Project Management") applied to the construction process is a methodological technique that helps to organize, control and manage the resources of the promoters in the building process. When resources are limited (which is usually most situations) to manage them efficiently becomes very important. Well, we find that in this situation, the resources are not only limited, but it is limited, so a comprehensive control and monitoring of them becomes not only important if not crucial. The alternative of starting from scratch with a team that specializes in developing these follow directly intervening to ensure that scarce resources are used in the best possible way requires the use of a specific methodology (Manual DIP, Matrix Foreign EDR breakdown structure EDP Project, Risk Management and Control, Design Management, et ..), that is the methodology used by "Projects managers" to ensure that the initial objectives of the promoters or investors are met and all actors in process, from design to construction company have the mind aim of the project will do, trying to get their interests do not prevail over the interests of the project. Among the agents listed in the building process, "Project Management" or DIPE (Director Comprehensive building process, a proposed name for possible incorporation into the LOE, ) currently not listed as such in the LOE (Act on Construction Planning ), one of the agents that exist within the building process is not regulated from the legal point of view, no obligations, ie, as is required by law to have a project, a builder, a construction management, etc. DIPE only one who wants to hire you as have been advanced knowledge of their services by the clients they have been hiring these agents, there being no legal obligation as mentioned above, then the market is dictating its ruling on this new figure, as if it were necessary, he was not hired and eventually disappeared from the building process. As the aim of this article is regular the process and implement the name of DIPE in the Spanish Law of buildings construction (LOE)
Resumo:
An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.