947 resultados para In vivo methods
Resumo:
Several species of Aspidosperma plants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellowperoba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorum extracts, the plant activity against Plasmodium falciparum was evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium bergheiin mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.
Resumo:
Brain spectrin is one of the major cytoskeletal proteins associated with the plasma membrane. In many tissues this protein occurs in a variety of isoforms, for which at least three have been described in the brain: i) brain spectrin 240/235 is localized in neurons most prominently in axons and is present early during brain development. ii) Brain spectrin 240/235E is immunologicaly related to erythrocyte spectrin and restricted to somato-dendritic regions in neurons and to glia. It appears late in brain development. iii) A third form, brain spectrin 240/ 235A, is found exclusively in astrocytes. In this study we have investigated the appearance and distribution of brain spectrins 240/235 and 240/235E during embryonic chick dorsal root ganglia development in vivo and in vitro. This system provides a unique model due to the lack of dendrites on developing sensory neurons. Both isoforms first appeared at embryonic day 6. Brain spectrin 240/235 increased transiently around embryonic day 10 and 14, and was first expressed in ventrolateral neurons. It was localized abundantly in perikarya and their axons. This somato-axonal distribution pattern found in situ was also observed in vitro. In contrast, brain spectrin 240/235E only slightly increased between E6 and E15 and remained unchanged thereafter. It was localized mainly in small neurons of the mediodorsal area, where it was found as punctate staining in the cytoplasm, forming first a nuclear cap and in subsequent stages becoming distributed evenly throughout cytoplasm. This brain spectrin isoform was absent from axons, both in situ and in vitro. In conclusion, this study suggests i) that brain spectrin 240/235 may contribute towards the outgrowth, elongation and possibly maintenance of axonal processes, ii) that brain spcctrin 240/235E could be involved in the stablization of the cytoarchilecture of cell bodies in a sclected population of ganglion cells, and iii) that isoform expression of brain spectrin 240/235E in DRG cells may depend on environmental factors.
Resumo:
The polar hydroethanolic extract from Selaginella sellowii(SSPHE) has been previously proven active on intracellular amastigotes (in vitro test) and now was tested on hamsters infected with Leishmania (Leishmania) amazonensis (in vivo test). SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb) (28 mg/Kg/day × 5). When orally administered, SSPHE (50 mg/kg/day × 20) suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis.
Resumo:
Mouse interleukin 3 (IL-3) cDNA was cloned into a plasmid construction, allowing the synthesis of very high quantities of IL-3 in Escherichia coli. The recombinant (r) IL-3, purified to homogeneity, was active in vitro on the proliferation and differentiation of various hematopoietic progenitor cells at 1 pM. To maintain detectable blood levels of IL-3, osmotic pumps containing rIL-3 or control solutions were placed under the skin of normal and irradiated C3H/HeJ and (BALB X B10) F1 mice. The effect of IL-3 on hematopoietic progenitor cell numbers in spleen and bone marrow was evaluated 3 and 7 days later by using an in vitro clonal assay. The results demonstrated the following: (i) Doses of IL-3 infused at the rate of 2.5-5 ng per g of body weight per hr were sufficient to increase the numbers of hematopoietic progenitors in normal mice by at least 2-fold within 3 days. (ii) In mice with progenitor cell levels depressed by sublethal irradiation, 7-day treatment with IL-3 resulted in a 10-fold increase to near normal levels. (iii) The erythroid and myeloid lineages appeared to be enhanced to the same extent. (iv) Enhancement of hematopoiesis occurred primarily in spleen, but hematopoietic foci were also evident in the liver; in contrast, total cell and progenitor cell numbers were decreased in the bone marrow.
Resumo:
Hematopoietic stem cells (HSC) are probably the best understood somatic stem cells and often serve as a paradigm for other stem cells. Nevertheless, most current techniques to genetically manipulate them in vivo are either constitutive and/or induced in settings of hematopoietic stress such as after irradiation. Here, we present a conditional expression system that allows for externally controllable transgenesis and knockdown in resident HSCs, based on a lentiviral vector containing a tet-O sequence and a transgenic mouse line expressing a doxycyclin-regulated tTR-KRAB repressor protein. HSCs harvested from tTR-KRAB mice are transduced with the lentiviral vector containing a cDNA (i.e., Green Fluorescent Protein (GFP)) and/or shRNA (i.e., p53) of interest and then transplanted into lethally irradiated recipients. While the vector is effectively repressed by tTR-KRAB during homing and engraftment, robust GFP/shp53 expression is induced on doxycyclin treatment in HSCs and their progeny. Doxycylin-controllable transcription is maintained on serial transplantation, indicating that repopulating HSCs are stably modified by this approach. In summary, this easy to implement conditional system provides inducible and reversible overexpression or knock down of genes in resident HSCs in vivo using a drug devoid of toxic or activating effects.
Resumo:
We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the artefactual concerns encountered in using heterologous systems are totally excluded.
Resumo:
A previously described extract of sheep fetal liver was reported to reverse many of the cytokine changes associated with aging in mice, including an augmented spleen cell ConA-stimulated production of IL-4 and decreased production of IL-2. Similar effects were not seen with adult liver preparations. These changes were observed in various strains of mice, including BALB/c, DBA/2 and C57BL/6, using mice with ages ranging from 8 to 110 weeks. Preliminary characterization of this crude extract showed evidence for the presence of Hb gamma chain, as well as of lipid A of LPS. We show below that purified preparations of sheep fetal Hb, but not adult Hb, in concert with suboptimally stimulating doses of LPS (lipid A), cooperate in the regulation of production of a number of cytokines, including TNFalpha and IL-6, in vitro. Furthermore, isolated fresh spleen or peritoneal cells from animals treated in vivo with the same combination of Hb and LPS, showed an augmented capacity to produce these cytokines on further culture in vitro. Evidence was also obtained for a further interaction between CLP, LPS and fetal Hb itself in this augmented cytokine production. These data suggest that some of the functional activities in the fetal liver extract reported earlier can be explained in terms of a novel immunomodulatory role of a mixture of LPS (lipid A) and fetal Hb.
Resumo:
Our study describes tissue-specific migration of T and B cells during a localized anti-viral immune response. After mouse mammary tumor virus (MMTV) injection, B lymphocytes of the draining lymph node become infected and present a retroviral superantigen to CD4(+) T lymphocytes. Infected B cells receive superantigen-mediated help in a fashion comparable to classical immune responses. To investigate the fate of T and B lymphocytes that had interacted via cognate help in the same peripheral lymph node microenvironment we adoptively transferred them into naive recipients. Here we show that MMTV-infected B cells and superantigen-stimulated T cells were programmed to migrate to distinct sites of the body. Plasmablasts but not T cells migrated to the mammary gland and activated alpha4beta1 integrins were found to have a crucial role in the migration to the mammary gland. In contrast, T cells had a much higher affinity for secondary lymphoid organs and large intestine. This demonstrates that upon antigen-driven B and T lymphocyte interaction in the local draining lymph node a subset-specific homing program for B and T lymphocytes is induced.
Resumo:
Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, (1)H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, (13)C MRS with the infusion of (13)C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of (13)C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.
Resumo:
Il s'agit de comparer in vivo la sécurité et l'efficacité d'un implant en polyméthylméthacrylate (PMMA) avec un implant standard en collagène dans la sclérectomie profonde (SP) sur une durée de six mois. La population étudiée comprend vingt lapins, chaque lapin étant randomisé pour une SP avec implant en PMMA dans un oeil et implant de collagène dans l'autre oeil. Plusieurs éléments ont été pris en compte dans la comparaison : - la mesure de la pression intraoculaire - l'évolution de l'espace de drainage intrascléral et de la bulle de filtration sous-conjonctivale, suivie par ultrasonographic biomicroscopique (UBM) - la croissance de nouveaux vaisseaux de drainage sous-conjonctivaux, croissance quantifiée par angiographie du segment antérieur à la fluorescéine combinée au vert d'indocyanine - la facilité à l'écoulement de l'humeur aqueuse (C), mesurée à six mois par cannulation-perfusion de la chambre antérieur - la sclère au site de SP, histologiquement comparée à la sclère native opposée à 180°, également à six mois La pression intraoculaire moyenne préopératoire à une, quatre, douze et 24 semaines postopératoires est comparable dans les deux groupes (P>0.1). L'UBM montre une régression légèrement plus rapide (statistiquement non significative) de la bulle de filtration sous-conjonctivale et la persistance d'un espace de drainage intrascléral dans le groupe PMMA (P>0.05). De nouveaux vaisseaux de drainage sont observés à un mois de la chirurgie ; à six mois, ces vaisseaux sont plus nombreux dans le groupe PMMA, tant sur l'analyse angiographique que sur l'analyse histologique (P>0.05). La facilité moyenne à l'écoulement de l'humeur aqueuse est significativement plus élevées à six mois dans les deux groupes par rapport aux valeurs préopératoires (P>0.05), sans qu'il n'y ait de différence entre les deux implants (0.24 ± 0.06 μΙ/min/mmHg [PMMA] et 0.23 ± 0.07 μΙ/min/mmHg [implant en collagène]) (Ρ = 0.39). Cette étude a pu démontrer que la sclérectomie profonde avec implant en collagène ou en PMMA donne des résultats similaires en terme de diminution de l'IOP et d'augmentation de la facilité à l'écoulement de l'humeur aqueuse, sans différence sur le plan des réactions inflammatoires post-intervention.
Resumo:
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.
Resumo:
Dermatophytes cause the majority of superficial mycoses in humans and animals. However, little is known about the pathogenicity of this specialized group of filamentous fungi, for which molecular research has been limited thus far. During experimental infection of guinea pigs by the human pathogenic dermatophyte Arthroderma benhamiae, we recently detected the activation of the fungal gene encoding malate synthase AcuE, a key enzyme of the glyoxylate cycle. By the establishment of the first genetic system for A. benhamiae, specific ΔacuE mutants were constructed in a wild-type strain and, in addition, in a derivative in which we inactivated the nonhomologous end-joining pathway by deletion of the A. benhamiae KU70 gene. The absence of AbenKU70 resulted in an increased frequency of the targeted insertion of linear DNA by homologous recombination, without notably altering the monitored in vitro growth abilities of the fungus or its virulence in a guinea pig infection model. Phenotypic analyses of ΔacuE mutants and complemented strains depicted that malate synthase is required for the growth of A. benhamiae on lipids, major constituents of the skin. However, mutant analysis did not reveal a pathogenic role of the A. benhamiae enzyme in guinea pig dermatophytosis or during epidermal invasion of the fungus in an in vitro model of reconstituted human epidermis. The presented efficient system for targeted genetic manipulation in A. benhamiae, paired with the analyzed infection models, will advance the functional characterization of putative virulence determinants in medically important dermatophytes.
Resumo:
Patient-specific simulations of the hemodynamics in intracranial aneurysms can be constructed by using image-based vascular models and CFD techniques. This work evaluates the impact of the choice of imaging technique on these simulations
Resumo:
Bisphosphonates are known for their strong inhibitory effect on bone resorption. Their influence on bone formation however is less clear. In this study we investigated the spatio-temporal effect of locally delivered Zoledronate on peri-implant bone formation and resorption in an ovariectomized rat femoral model. A cross-linked hyaluronic acid hydrogel was loaded with the drug and applied bilaterally in predrilled holes before inserting polymer screws. Static and dynamic bone parameters were analyzed based on in vivo microCT scans performed first weekly and then biweekly. The results showed that the locally released Zoledronate boosted bone formation rate up to 100% during the first 17 days after implantation and reduced the bone resorption rate up to 1000% later on. This shift in bone remodeling resulted in an increase in bone volume fraction (BV/TV) by 300% close to the screw and 100% further away. The double effect on bone formation and resorption indicates a great potential of Zoledronate-loaded hydrogel for enhancement of peri-implant bone volume which is directly linked to improved implant fixation.
Resumo:
We have previously described a unique system for identifying Ag-selected CD8 T cells during an in vivo response in normal mice. In this system, lymphocytes isolated from DBA/2 mice injected i.p. with HLA-CW3 transfected syngeneic (H-2d) P815 cells show a remarkable expansion of CD8 cells that utilize TCR expressing the V beta 10 gene segment and additional structural features characteristic of Kd-restricted CW3-specific CTL clones. We have now taken advantage of this system to characterize the surface phenotype of CD8 cells selected by Ag in vivo. We observed several distinct phenotypes at different stages of the response. At the peak of the response, Ag-selected cells were low in CD62L and CD45RB expression but displayed high levels of CD44. In addition, there was a partial down-regulation of CD8 and TCR. Cells of this phenotype were present in lymphoid tissues for several mo after immunization. Much later in the response, Ag-selected cells expressed higher levels of CD8 and TCR. Moreover, a distinct subset of these long-term immune cells emerged that now expressed CD62L and CD45RB. Analysis of CD8 cells from different tissues also revealed certain differences, particularly in TCR and co-receptor levels from liver-derived cells compared with circulating cells at the peak of the response. Our findings suggest that the function of Ag-selected CD8 cells may be regulated over time and according to location by subtle changes in cell-surface phenotype.