964 resultados para INTEGER LINEAR PROGRAMMING


Relevância:

50.00% 50.00%

Publicador:

Resumo:

We derived a framework in integer programming, based on the properties of a linear ordering of the vertices in interval graphs, that acts as an edge completion model for obtaining interval graphs. This model can be applied to problems of sequencing cutting patterns, namely the minimization of open stacks problem (MOSP). By making small modifications in the objective function and using only some of the inequalities, the MOSP model is applied to another pattern sequencing problem that aims to minimize, not only the number of stacks, but also the order spread (the minimization of the stack occupation problem), and the model is tested.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The decomposition of a fractional linear system is discussed in this paper. It is shown that it can be decomposed into an integer order part, corresponding to possible existing poles, and a fractional part. The first and second parts are responsible for the short and long memory behaviors of the system, respectively, known as characteristic of fractional systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the line opened by Kalai and Muller (1997), we explore new conditions on prefernce domains which make it possible to avoid Arrow's impossibility result. In our main theorem, we provide a complete characterization of the domains admitting nondictorial Arrovian social welfare functions with ties (i.e. including indifference in the range) by introducing a notion of strict decomposability. In the proof, we use integer programming tools, following an approach first applied to social choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In order to obtain a representation of Arrovian social welfare functions whose range can include indifference, we generalize Sethuraman et al.'s work and specify integer programs in which variables are allowed to assume values in the set {0, 1/2, 1}: indeed, we show that, there exists a one-to-one correspondence between solutions of an integer program defined on this set and the set of all Arrovian social welfare functions - without restrictions on the range.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the integer programming approach introduced by Sethuraman, Teo, and Vohra (2003), we extend the analysis of the preference domains containing an inseparable ordered pair, initiated by Kalai and Ritz (1978). We show that these domains admit not only Arrovian social welfare functions \without ties," but also Arrovian social welfare functions \with ties," since they satisfy the strictly decomposability condition introduced by Busetto, Codognato, and Tonin (2012). Moreover, we go further in the comparison between Kalai and Ritz (1978)'s inseparability and Arrow (1963)'s single-peak restrictions, showing that the former condition is more \respectable," in the sense of Muller and Satterthwaite (1985).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the development and solution of binary integer formulations for production scheduling problems in market-driven foundries. This industrial sector is comprised of small and mid-sized companies with little or no automation, working with diversified production, involving several different metal alloy specifications in small tailor-made product lots. The characteristics and constraints involved in a typical production environment at these industries challenge the formulation of mathematical programming models that can be computationally solved when considering real applications. However, despite the interest on the part of these industries in counting on effective methods for production scheduling, there are few studies available on the subject. The computational tests prove the robustness and feasibility of proposed models in situations analogous to those found in production scheduling at the analyzed industrial sector. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Le persone che soffrono di insufficienza renale terminale hanno due possibili trattamenti da affrontare: la dialisi oppure il trapianto di organo. Nel caso volessero seguire la seconda strada, oltre che essere inseriti nella lista d'attesa dei donatori deceduti, possono trovare una persona, come il coniuge, un parente o un amico, disposta a donare il proprio rene. Tuttavia, non sempre il trapianto è fattibile: donatore e ricevente possono, infatti, presentare delle incompatibilità a livello di gruppo sanguigno o di tessuto organico. Come risposta a questo tipo di problema nasce il KEP (Kidney Exchange Program), un programma, ampiamente avviato in diverse realtà europee e mondiali, che si occupa di raggruppare in un unico insieme le coppie donatore/ricevente in questa stessa situazione al fine di operare e massimizzare scambi incrociati di reni fra coppie compatibili. Questa tesi approffondisce tale questione andando a valutare la possibilità di unire in un unico insieme internazionale coppie donatore/ricevente provenienti da più paesi. Lo scopo, naturalmente, è quello di poter ottenere un numero sempre maggiore di trapianti effettuati. Lo studio affronta dal punto di vista matematico problematiche legate a tale collaborazione: i paesi che eventualmente accettassero di partecipare a un simile programma, infatti, devono avere la garanzia non solo di ricavarne un vantaggio, ma anche che tale vantaggio sia equamente distribuito fra tutti i paesi partecipanti.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss linear Ricardo models with a range of parameters. We show that the exact boundary of the region of equilibria of these models is obtained by solving a simple integer programming problem. We show that there is also an exact correspondence between many of the equilibria resulting from families of linear models and the multiple equilibria of economies of scale models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"UILU-ENG 77 1711."