920 resultados para INSOLUBLE DIETARY FIBER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the influence of diets with different degrees of energy deficiency on the hormonal profile and vital functions, 12 steers were randomly distributed into 3 groups of 4 animals. For 140 days, each group received (G1) a diet to promote a weight gain of 900gr/day (17.7 Mcal/d DE and 13% CP), (G2) 80% of the maintenance requirements (5.8 Mcal/d DE and 7% CP), or (G3) 60% of the maintenance requirements (4.7 Mcal/d DE and 5% CP). In G2 and G3, the energy deficit caused a marked decrease in the heart rate and respiratory rate and a reduction in the blood levels of Insulin like growth factor-1 (IGF-1) and triiodothyronine (T3). The decrease in heart rate, respiratory movement and, to a lesser extent, reduction of the rectal temperature, reflected the low status of energy and was negatively impacted by the low levels of T3. There was a strong correlation between the hormones T3 and IGF-1 (r=0.833). There were also strong correlations between T3 and HR (r=0.701), T3 and RR (r=0.632), IGF-1 and HR (r=0.731), and IGF-1 and RR (r=0.679). There were intermediate correlations between T3 and TºC (r=0.484), T3 and insulin (r=0.506), IGF-1 and insulin (r=0.517), and IGF-1 and TºC (r=0.548). This study showed the influence of a long period of providing an energy-deficient diet on animal performance, correlating hormonal status and vital functions in growing cattle. The results indicated that the evaluated parameters represent an important tool for the early detection of dietary deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cranial bone reconstructions are necessary for correcting large skull bone defects due to trauma, tumors, infections and craniotomies. Traditional synthetic implant materials include solid or mesh titanium, various plastics and ceramics. Recently, biostable glass-fiber reinforced composites (FRC), which are based on bifunctional methacrylate resin, were introduced as novel implant solution. FRCs were originally developed and clinically used in dental applications. As a result of further in vitro and in vivo testing, these composites were also approved for clinical use in cranial surgery. To date, reconstructions of large bone defects were performed in 35 patients. This thesis is dedicated to the development of a novel FRC-based implant for cranial reconstructions. The proposed multi-component implant consists of three main parts: (i) porous FRC structure; (ii) bioactive glass granules embedded between FRC layers and (iii) a silver-polysaccharide nanocomposite coating. The porosity of the FRC structure should allow bone ingrowth. Bioactive glass as an osteopromotive material is expected to stimulate the formation of new bone. The polysaccharide coating is expected to prevent bacterial colonization of the implant. The FRC implants developed in this study are based on the porous network of randomly-oriented E-glass fibers bound together by non-resorbable photopolymerizable methacrylate resin. These structures had a total porosity of 10–70 volume %, of which > 70% were open pores. The pore sizes > 100 μm were in the biologically-relevant range (50-400 μm), which is essential for vascularization and bone ingrowth. Bone ingrowth into these structures was simulated by imbedding of porous FRC specimens in gypsum. Results of push-out tests indicated the increase in the shear strength and fracture toughness of the interface with the increase in the total porosity of FRC specimens. The osteopromotive effect of bioactive glass is based on its dissolution in the physiological environment. Here, calcium and phosphate ions, released from the glass, precipitated on the glass surface and its proximity (the FRC) and formed bone-like apatite. The biomineralization of the FRC structure, due to the bioactive glass reactions, was studied in Simulated Body Fluid (SBF) in static and dynamic conditions. An antimicrobial, non-cytotoxic polysaccharide coating, containing silver nanoparticles, was obtained through strong electrostatic interactions with the surface of FRC. In in vitro conditions the lactose-modified chitosan (chitlac) coating showed no signs of degradation within seven days of exposure to lysozyme or one day to hydrogen peroxide (H2O2). The antimicrobial efficacy of the coating was tested against Staphylococcus aureus and Pseudomonas aeruginosa. The contact-active coating had an excellent short time antimicrobial effect. The coating neither affected the initial adhesion of microorganisms to the implant surface nor the biofilm formation after 24 h and 72 h of incubation. Silver ions released to the aqueous environment led to a reduction of bacterial growth in the culture medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pappersindustrin står inför många utmaningar och bör uppfylla krav som ställs av t.ex. marknadstrender och slutanvändare. Snabbare och effektivare processer ställer även större krav på pappersbanans mekaniska egenskaper. Avbrott i produktionen sker inte enbart pga. låg styrka utan orsaken kan även vara en för låg spänning i pappersbanan. De flesta problemen sker vid våtpressen och/eller i början av torkpartiet då papprets torrhalt är 30-70 %. Spänningen hålls inte konstant efter töjning, utan sjunker pga. papprets relaxering, som till största delen sker då pappret flyttas från pressen till torkpartiet. Ur forskningssynvinkel öppnar en smidigt fungerande verksamhet med potentiella energibesparingar upp möjligheterna för förbättring av befintliga processer. I detta arbete undersöktes hur olika faktorer inverkar på fibernätverkets avvattning, initiala våtstyrka och relaxering samt också på slutproduktens mekaniska egenskaper och ytegenskaper. I första delen ändrades processvattnets egenskaper, såsom pH, konduktivitet och ytspänning. Ytspänningen varierades genom tillsatts av ett nonjoniskt ytaktivt ämne, s.k. surfaktant. Fiberegenskaperna modifierades också. Fibern maldes antingen genom en mild eller genom en hård process. Effekten av finmaterial undersöktes genom att tillsätta finmaterial till den ursprungliga massan eller genom att avlägsna finmaterialet från den malda massan. I den sista delen användes en hemicellulosa, som finns i stora mängder i gran, som tillsatsmedel. Förutom naturliga galaktoglukomannaner (GGM), tillverkades också en katjoniserad, en karboximetylerad samt en iminerad, amfifil GGM. Dessa användes i pappersmassa eller sprayades på ytan av ett nybildat ark. Resultaten, som erhölls i denna avhandling, bildar en värdefull kunskapsbas, som kan användas för kontroll och reglering av pappersmaskinens körbarhet och papperskvalitet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this investigation was to evaluate the possibility to enhance certain qualities of facial prostheses. Polymethyl methacrylate is still being used as base mate¬rial or clip carrier material, but it is hard and heavy, and debonding of the silicone from the acrylic base material is a frequent problem. This thesis aims to evaluate the use of fiber-reinforced composite (FRC) as framework material for maxillofacial silicone prostheses. FRC has been used as reinforcement in removable and fixed partial dentures since the 1990s. This material is lightweight and can be fabricated to compress the margins of the prosthesis slightly, to keep it tightly against the skin during jaw movements and facial expressions. Additionally, the use of a thermochromic pigment, colorless in room temperature and red in a cold environment, was studied in order to evaluate the possibility of using this color changing pigment in facial prostheses to mimic the color change of facial skin in cold weather. The tensile bond strength between pre-impregnated, unidirectional FRC and maxillofacial silicone elastomer was studied. Three different bonding agents or primers were compared. Bond strength was improved by one of the primers and by roughening the surface. The effect of a skin compressing glass fiber-reinforced composite framework on facial skin blood flow was studied by using a face mask, constructed with a compression pad corresponding to the outer margin of a glass fiber-reinforced framework beam of a facial prosthesis. The skin blood flow of ten healthy volunteers, aged 23-25 years, was measured during touch, light, and moderate compression of the skin, by using laser Doppler imaging technique. None of the compressions showed any marked effects on local skin blood flow. There were no significant differences between blood flow during compression and at baseline. Maxillofacial silicone elastomer was colored intrinsically with conventional color pigments: a control group containing only conventional pigments was compared to two test groups with 0.2 wt% and 0.6 wt% thermochromic pigment added. The color of the material was measured with a spectrophotometer in room temperature and after storage in a freezer. The color stability of the maxillofacial silicone elastomer colored with thermo¬chromic pigment was evaluated by artificial aging. The color dif¬ference of the L* (lightness) and a* values (redness), comparing color after the samples were stored at room temperature and in a freezer (-19°C), was statistically significant for both 0.2 wt% and 0.6 wt% thermo¬chromic pigment groups. The differences in the b* values (yellowness) were statistically significant for the 0.6 wt% group. Exposure to ultraviolet (UV) radiation led to visually noticeable and statistically signifi¬cant color changes (ΔE) in all color values in both test groups. The specimens containing thermochromic pigment were very sensitive to UV radiation. In conclusion, a framework of fiber-reinforced composite can successfully be bonded to maxillofacial silicone elastomer, and a framework beam, compressing the facial skin, did not remarkably alter the skin blood flow on healthy, young adults. The thermochromic pigment showed color change in maxillofacial silicone elastomer. However, artificial aging showed that it was too sensitive to UV radiation to be used, as such, in maxillofacial prostheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose fiber-silica nanocomposites with novel mechanical, chemical and thermal properties have potential to be widely applied in different area. Monodispered silica nanoparticles play an important role in enhancing hybrids properties of hardness, strength, thermal stability etc. On the other hand, cellulose is one of the world’s most abundant and renewable polymers and possesses several unique properties required in many areas and biomedicine. The aim of this master thesis is to study if silica particles from reaction of sodium silicate and sulphuric acid can be adsorbed onto cellulose fiber surfaces via in situ growth. First, nanosilica particles were synthesized. Effect of pH and silica contents were tested. In theoretical part, introduction of silica, methods of preparation of nanosilica from sodium silicate, effect factors and additives were discussed. Then, cellulose fiber-silica nanocomposites were synthesis via route from sodium silicate and route silicic acid. In the experiment of route from sodium silicate, the effects of types of sodium silicate, pH and target ratio of silica to fiber were investigated. From another aspect, the effects of types of sodium silicate, fiber concentration in mixture solution and target ratio of silica to fiber were tested in the experiment of route from silicic acid. Samples were investigated via zeta potential measurement, particle size distribution, ash content measurement and Scanning Electron Microscopy (SEM). The Results of the experiment of preparing silica sol were that the particle size of silica sol was smaller prepared in pH 11.7 than that prepared in pH 9.3. Then in the experiment of synthesis of cellulose fiber-silica nanocomposites, it was concluded that the zeta potential of all the samples were around -16 mV and the highest ash content of all the samples was only 1.4%. The results of SEM images showed only a few of silica particles could be observed on the fiber surface, which corresponded to the value of ash content measurement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute thrombosis can be induced in rabbits by a triggering protocol using Russell's viper venom and histamine given after 8 months of a 1% cholesterol diet and balloon desendothelization. In the present study, we tested the hypothesis that aortic desendothelization performed 4 months before the triggering protocol without a high cholesterol diet is a highly effective and less expensive way of producing arterial atherosclerosis and thrombosis. Nineteen male New Zealand white rabbits on a normal diet were studied. The control group (N = 9) received no intervention during the 4-month observation period, while the other group (N = 10) was submitted to aortic balloon desendothelization using a 4F Fogarty catheter. At the end of this period, all animals were killed 48 h after receiving the first dose of the triggering treatment. Eight of 10 rabbits (80%) in the balloon-trauma group presented platelet-rich arterial thrombosis while none of the animals in the control group had thrombus formation (P<0.01). Thus, this model, using balloon desendothelization without dietary manipulation, induces arterial atherosclerosis and thrombosis and may provide possibilities to test new therapeutic approaches

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current methods for recording field potentials with tungsten electrodes make it virtually impossible to use the same recording electrode also as a lesioning electrode, for example for histological confirmation of the recorded site, because the lesioning procedure usually wears off the tungsten tip. Therefore, the electrode would have to be replaced after each lesioning procedure, which is a very high cost solution to the problem. We present here a low cost, easy to make, high quality glass pipette-carbon fiber microelectrode that shows resistive, signal/noise and electrochemical coupling advantages over tungsten electrodes. Also, currently used carbon fiber microelectrodes often show problems with electrical continuity, especially regarding electrochemical applications using a carbon-powder/resin mixture, with consequent low performance, besides the inconvenience of handling such a mixture. We propose here a new method for manufacturing glass pipette-carbon fiber microelectrodes with several advantages when recording intracerebral field potentials

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates the influence of different concentrations of calcium on blood pressure of normotensive rats. Four groups of Wistar rats (A, B, C and D) had free access to modified isocaloric and isoproteic diets containing 0.2, 0.5, 2 and 4 g% calcium as calcium carbonate for a period of 30 days. Systolic and diastolic arterial blood pressures were monitored in awake rats by the indirect tail cuff method using a Physiograph equipped with transducers and preamplifiers. Body weight and length and food intake were monitored. Under the conditions of the present experiment, the systolic and diastolic arterial blood pressures of group D rats fed a diet containing 4 g% calcium were significantly (P<0.05) lower compared to rats of the other groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collagen structure of isolated and in situ liver granuloma from Swiss Webster mice infected with Schistosoma mansoni was sequentially and three-dimensionally analyzed during different times of infection (early acute, acute, transitional acute-chronic, and chronic phases) by laser scanning confocal microscopy and electron scanning variable vacuum microscopy. The initial granuloma structure is characterized by vascular collagen residues and by anchorage points (or fiber radiation centers), from where collagenous fibers are angularly shed and self-assembled. During the exudative-productive stage, the self-assembly of these fibers minimizes energy and mass through continuous tension and focal compression. The curvature or angles between collagen fibers probably depends on the fibroblastic or myofibroblastic organization of stress fibers. Gradually, the loose unstable lattice of the exudative-productive stage transforms into a highly packed and stable architecture as a result of progressive compactness. The three-dimensional architecture of granulomas provides increased tissue integrity, efficient distribution of soluble compounds and a haptotactic background to the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we investigated the effect of salt intake on myenteric neuron size of the colon of adult male Wistar rats. The animals were placed on either a high-salt (HS; 8%; 12 animals) or a low-salt diet (LS; 0.15%; 12 animals) for 15 or 52 weeks and blood pressure was measured. The sizes of myenteric neurons of the distal colon from both groups were measured. No difference in neuron size was observed between the HS and LS groups after 15 weeks. After 52 weeks on HS, neuron size was increased (P<0.005) when compared with the LS group. The rats also presented hypertension, which was significantly different at 52 weeks (142 ± 11 vs 119 ± 7 mmHg). These results suggest that a long time on an HS diet can significantly increase myenteric nerve cell size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study the age-related changes of the striated muscle elastic fiber system were investigated in the diaphragm and rectus abdominis muscles of 1-, 4-, 8- and 18-month-old rats. The activation patterns of these muscles differ in that the diaphragm is regularly mobilized tens of times every minute during the entire life of the animal whereas the rectus abdominis, although mobilized in respiration, is much less and more irregularly activated. The elastic fibers were stained by the Verhoeff technique for mature elastic fibers. Weigert stain was used to stain mature and elaunin elastic fibers, and Weigert-oxone to stain mature, elaunin and oxytalan elastic fibers. The density of mature and elaunin elastic fibers showed a progressive increase with age, whereas the amount of oxytalan elastic fibers decreased in both diaphragm and rectus abdominis muscles and their muscular fascias. These age-related quantitative and structural changes of the elastic fiber system may reduce the viscoelastic properties of the diaphragm and rectus abdominis muscles, which may compromise the transmission of tensile muscle strength to the tendons and may affect maximum total strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal aging is accompanied by renal functional and morphological deterioration and dietetic manipulation has been used to delay this age-related decline. We examined the effects of chronic administration of diets containing 5% lipid-enriched diet (LD, w/w) on renal function of rats at different ages. Three types of LD were tested: canola oil, fish oil and butter. Mean systemic tail-cuff blood pressure and glycemia remained within the normal range whatever the age and the diet of the animals. Proteinuria began to rise from the 8th month in the groups ingesting LD, while in the control group it increased significantly (above 10 mg/24 h) only after the 10th month. With age, a significant and progressive decline in glomerular filtration rate (GFR) and renal plasma flow was observed in the LD groups but after 6 months of lipid supplementation, the decline in these parameters was more marked in the butter and fish oil groups. By the 18th month, the lowest GFR level was observed in the group ingesting the butter diet (2.93 ± 0.22 vs 5.01 ± 0.21 ml min-1 kg-1 in control, P<0.05). Net acid excretion, evaluated in 9- and 18-month-old rats, was stimulated in the fish oil group when compared both to control and to the other two LD groups. These results suggest that even low levels of LD in a chronic nutritional regimen can modify the age-related changes in renal function and that the impact of different types of lipid-supplemented diets on renal function depends on the kind of lipid present in the diet.