995 resultados para IN-VIVO EVALUATION
Resumo:
The mammalian target of rapamycin (mTOR), which exists in two functionally distinct complexes, mTORC1 and mTORC2 plays an important role in tumor growth. Whereas the role of mTORC1 has been well characterized in this process, little is known about the functions of mTORC2 in cancer progression. In this study, we explored the specific role of mTORC2 in colon cancer using a short hairpin RNA expression system to silence the mTORC2-associated protein rictor. We found that downregulation of rictor in HT29 and LS174T colon cancer cells significantly reduced cell proliferation. Knockdown of rictor also resulted in a G1 arrest as observed by cell cycle analysis. We further observed that LS174T cells deficient for rictor failed to form tumors in a nude mice xenograft model. Taken together, these results show that the inhibition of mTORC2 reduces colon cancer cell proliferation in vitro and tumor xenograft formation in vivo. They also suggest that specifically targeting mTORC2 may provide a novel treatment strategy for colorectal cancer.
Resumo:
In vivo localized and fully adiabatic homonuclear and heteronuclear polarization transfer experiments were designed and performed in the rat brain at 9.4 T after infusion of hyperpolarized sodium [1,2-(13)C(2)] and sodium [1-(13)C] acetate. The method presented herein leads to highly enhanced in vivo detection of short-T(1) (13)C as well as attached protons. This indirect detection scheme allows for probing additional molecular sites in hyperpolarized substrates and their metabolites and can thus lead to improved spectral resolution such as in the case of (13)C-acetate metabolism.
Resumo:
CD4+CD25+ regulatory T cells (Tregs) play a critical role in the prevention of autoimmune diseases as well as in the induction and maintenance of dominant tolerance in transplantation models. While their suppressive function has been extensively studied in vitro, their homeostasis and mechanisms of immunoregulation still remain to be clarifi ed in vivo. Using a murine adoptive transfer and skin allograft model, we analysed the expansion, effector function and traffi cking of effector T cells in the presence or absence of donor-specifi c Tregs. Although hyporesponsive to allogeneic and polyclonal stimulation in vitro, transferred Tregs survived and expanded, in response to an allograft in vivo. When co-transferred with naive CD4+CD25- effector T cells, they specifi cally prevented donor but not 3rd party allograft rejection by inhibiting the production of effector cytokines rather than the proliferation of effector T cells in response to alloantigens. The co-transfer of donor-specifi c Tregs did not affect the homing of effector T cells towards the graft draining lymph nodes, but it markedly reduced the infi ltration of the allograft by these pathogenic cells. Furthermore, in recipients where donor-specifi c transplantation tolerance was induced, Tregs preferentially accumulated in the allograft draining lymph nodes and within the grafted skin itself. Taken together, our results suggest that the suppression of graft rejection is an active process that involves the persistent presence of Tregs at the site of antigenic challenge.
Resumo:
One of the principal issues facing biomedical research is to elucidate developmental pathways and to establish the fate of stem and progenitor cells in vivo. Hematopoiesis, the process of blood cell formation, provides a powerful experimental system for investigating this process. Here, we employ transcriptional regulatory elements from the stem cell leukemia (SCL) gene to selectively label primitive and definitive hematopoiesis. We report that SCL-labelled cells arising in the mid to late streak embryo give rise to primitive red blood cells but fail to contribute to the vascular system of the developing embryo. Restricting SCL-marking to different stages of foetal development, we identify a second population of multilineage progenitors, proficient in contributing to adult erythroid, myeloid and lymphoid cells. The distinct lineage-restricted potential of SCL-labelled early progenitors demonstrates that primitive erythroid cell fate specification is initiated during mid gastrulation. Our data also suggest that the transition from a hemangioblastic precursors with endothelial and blood forming potential to a committed hematopoietic progenitor must have occurred prior to SCL-marking of definitive multilineage blood precursors.
Resumo:
OBJECTIVES: Calcium-sensing receptors (CaSRs) have been localized in the juxtaglomerular apparatus where they may contribute to the regulation of renin release. In the present study, we investigated the in-vitro and in-vivo effects of the calcimimetic R-568 on renin release. METHODS: In vitro, the effect of calcimimetics on renin release was assessed by incubating freshly isolated rat juxtaglomerular cells with or without R-568 (1 and 10 mumol/l) in serum-free medium in the presence or absence of forskolin or CaCl2. In vivo, we measured the impact of R-568 (20 ng/min intravenously) on the acute changes in plasma renin activity (PRA) induced by either a 90 min infusion of the angiotensin-converting enzyme inhibitor captopril, or the beta-receptor agonist isoproterenol, or of a vehicle in or after a furosemide challenge in conscious Wistar rats. RESULTS: In vitro, R-568 dose-dependently blunted renin release, but also reduced the increase in renin due to forskolin (P < 0.01). Both isoproterenol and enalapril increased in vivo PRA to 3.1 +/- 0.3 and 3.7 +/- 0.5 ng Ang I/ml per h, respectively (P < 0.01), compared with vehicle (1.5 +/- 0.2 ng Ang I/ml per h). R-568 significantly reduced PRA to 2.1 +/- 0.1 ng/ml per h in isoproterenol-treated rats and to 1.6 +/- 0.2 ng/ml per h in enalapril-treated rats (P < 0.05). In low-salt treated animals, acute infusion of furosemide increased PRA from 8.7 +/- 3.2 to 18.6 +/- 2.3, whereas R-568 partially blunted this rise to 11.2 +/- 1.5 (P = 0.02). In vivo, R-568 significantly lowered serum calcium and PTH1-84, but the drug-induced changes in PRA were independent of the changes in calcium and parathyroid hormone. CONCLUSION: After the recent discovery of CaSRs in juxtaglomerular cells of mice, our results confirm the presence of such receptors in rats and demonstrate that these receptors modulate renin release both in vitro and in vivo. This suggests that CaSRs play a role as a regulatory pathway of renin release.
Resumo:
BACKGROUND AND PURPOSE: To investigate the effect of chronic hyperglycemia on cerebral microvascular remodeling using perfusion computed tomography. METHODS: We retrospectively identified 26 patients from our registry of 2453 patients who underwent a perfusion computed tomographic study and had their hemoglobin A1c (HbA1c) measured. These 26 patients were divided into 2 groups: those with HbA1c>6.5% (n=15) and those with HbA1c≤6.5% (n=11). Perfusion computed tomographic studies were processed using a delay-corrected, deconvolution-based software. Perfusion computed tomographic values were compared between the 2 patient groups, including mean transit time, which relates to the cerebral capillary architecture and length. RESULTS: Mean transit time values in the nonischemic cerebral hemisphere were significantly longer in the patients with HbA1c>6.5% (P=0.033), especially in the white matter (P=0.005). Significant correlation (R=0.469; P=0.016) between mean transit time and HbA1c level was observed. CONCLUSIONS: Our results from a small sample suggest that chronic hyperglycemia may be associated with cerebral microvascular remodeling in humans. Additional prospective studies with larger sample size are required to confirm this observation.
Resumo:
The in vivo bilirubin-albumin binding interaction of ceftriaxone (CRO) was investigated in 14 non-jaundiced newborns, aged 33-42 weeks of gestation, during the first few days of life after they had reached stable clinical condition. CRO (50 mg/kg) was infused intravenously over 30 min. The competitive binding effect of CRO on the bilirubin-albumin complex was estimated by determining the reserve albumin concentration (RAC) at baseline, at the end of CRO infusion, and at 15 and 60 min thereafter. Immediately after the end of drug administration, RAC decreased from 91.9 (+/- 25.1) mumol/l to 38.6 (+/- 10.1) mumol/l (P = 0.0001). At the same time the plasma bilirubin toxicity index (PBTI) increased from 0.64 (+/- 0.40) before drug infusion to 0.96 (+/- 0.44) thereafter (P = 0.0001). The highest displacement factor (DF) was calculated to be 2.8 (+/- 0.6) at the end of drug infusion. Average total serum bilirubin concentrations decreased from a baseline value of 59.6 (+/- 27.0) mumol/l to 55.2 (+/- 27.1) mumol/l (P = 0.026). Sixty minutes after the end of CRO infusion, RAC was 58.3 (+/- 21.7) mumol/l, PBTI regained baseline, but DF was still 1.9 (+/- 0.2). No adverse events were recorded. Our results demonstrate significant competitive interaction of CRO with bilirubin-albumin binding in vivo. Thus, ceftriaxone should not be given to the neonate at risk of developing bilirubin encephalopathy.
Resumo:
Adoptive transfer therapy of in vitro-expanded tumor-specific cytolytic T lymphocytes (CTLs) can mediate objective cancer regression in patients. Yet, technical limitations hamper precise monitoring of posttherapy T cell responses. Here we show in a mouse model that fused single photon emission computed tomography and x-ray computed tomography allows quantitative whole-body imaging of (111)In-oxine-labeled CTLs at tumor sites. Assessment of CTL localization is rapid, noninvasive, three-dimensional, and can be repeated for longitudinal analyses. We compared the effects of lymphodepletion before adoptive transfer on CTL recruitment and report that combined treatment increased intratumoral delivery of CTLs and improved antitumor efficacy. Because (111)In-oxine is a Food and Drug Administration-approved clinical agent, and human SPECT-CT systems are available, this approach should be clinically translatable, insofar as it may assess the efficacy of immunization procedures in individual patients and lead to development of more effective therapies.
Resumo:
According to recent crystallographic studies, the TCR-alpha beta contacts MHC class I-bound antigenic peptides via the polymorphic V gene-encoded complementarity-determining region 1 beta (CDR1 beta) and the hypervariable (D)J-encoded CDR3 beta and CDR3 alpha domains. To evaluate directly the relative importance of CDR1 beta polymorphism on the fine specificity of T cell responses in vivo, we have taken advantage of congenic V beta a and V beta b mouse strains that differ by a CDR1 polymorphism in the V beta 10 gene segment. The V beta 10-restricted CD8+ T cell response to a defined immunodominant epitope was dramatically reduced in V beta a compared with V beta b mice, as measured either by the expansion of V beta 10+ cells or by the binding of MHC-peptide tetramers. These data indicate that V beta polymorphism has an important impact on TCR-ligand binding in vivo, presumably by modifying the affinity of CDR1 beta-peptide interactions.
Resumo:
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds to major histocompatibility complex class II molecules and selectively interacts with T cells that bear certain T cell receptor (TCR) V beta domains. Administration of SEB in adult mice results in initial proliferation of V beta 8+ T cells followed by a state of unresponsiveness resulting from a combination of clonal deletion and clonal anergy in the SEB-reactive population. At this time, it is unclear what relationship exists between the T cells that have proliferated and those that have been deleted or have become anergic. Here we show that only a fraction of the potentially reactive V beta 8+ T cells proliferate in response to SEB in vivo, and that all the cells that have proliferated eventually undergo apoptosis. Virtually no apoptosis can be detected in the nonproliferating V beta 8+ T cells. These data demonstrate a causal relationship between proliferation and apoptosis in response to SEB in vivo, and they further indicate that T cells bearing the same TCR V beta segment can respond differently to the same superantigen. The implications of this differential responsiveness in terms of activation and tolerance are discussed.
Resumo:
Purpose: The mechanisms by which CD4+CD25+Foxp3+ T cells (Tregs) regulate effector T cells in a transplantation setting and their in vivo homeostasis still remain to be clarified. Using a mouse adoptive transfer and skin transplantation model, we analyzed the in vivo expansion, effector function and trafficking of effector T cells and donor-specific Tregs, in response to an allograft. Methods and materials: Antigen-specific Tregs were generated and expanded in vitro by culturing freshly isolated Tregs from BALB/c mice (H2d) with syngeneic dendritic cells pulsed with an allopeptide (here the Kb peptide derived from the MHC class I molecule of allogeneic H2b mice). Fluorescent-labelled CD4+CD25- naive T cells and donor-antigen-specific Tregs were transferred alone or coinjected into syngeneic BALB/c-Nude recipients transplanted with allogeneic C57BL/6xBALB/c donor skin. Results: As opposed to their in vitro hyporesponsiveness, Tregs divided in vivo, migrated and accumulated in the allograft draining lymph nodes (drLN) and within the graft. The co-transfer of Tregs did not modify the early proliferation and homing of CD4+CD25- T cells to secondary lymphoid organs. But, in the presence of Tregs, effector T cells produced significantly less IFN- and IL-2 effector cytokines, while higher amounts of IL-10 were detected in the spleen and drLN of these mice. Furthermore, time-course studies showed that Tregs were recruited into the allograft at a very early stage posttransplantation and prevented infiltration by effector T cells. Conclusion: Overall, our results suggest that suppression of graft rejection involves the early recruitment of donor-specific Tregs at the sites of antigenic challenge and that Tregs mainly regulate the effector arm of T cell alloresponses.
Resumo:
Secretory immunoglobulin (Ig) A (SIgA) is essential in protecting mucosal surfaces. It is composed of at least two monomeric IgA molecules, covalently linked through the J chain, and secretory component (SC). We show here that a dimeric/polymeric IgA (IgA(d/p)) is more efficient when bound to SC in protecting mice against bacterial infection of the respiratory tract. We demonstrate that SC ensures, through its carbohydrate residues, the appropriate tissue localization of SIgA by anchoring the antibody to mucus lining the epithelial surface. This in turn impacts the localization and the subsequent clearance of bacteria. Thus, SC is directly involved in the SIgA function in vivo. Therefore, binding of IgA(d/p) to SC during the course of SIgA-mediated mucosal response constitutes a crucial step in achieving efficient protection of the epithelial barrier by immune exclusion.
Resumo:
The increase of total choline in tumors has become an important biomarker in cancer diagnosis. Choline and choline metabolites can be measured in vivo and in vitro using multinuclear MRS. Recent in vivo(13)C MRS studies using labeled substrates enhanced via dynamic nuclear polarization demonstrated the tremendous potential of hyperpolarization for real-time metabolic studies. The present study demonstrates the feasibility of detecting hyperpolarized (15)N labeled choline in vivo in a rat head at 9.4 T. We furthermore report the in vitro (172 +/- 16 s) and in vivo (126 +/- 15 s) longitudinal relaxation times. We conclude that with appropriate infusion protocols it is feasible to detect hyperpolarized (15)N labeled choline in live animals.