980 resultados para IEEE 1451
Resumo:
This paper describes the communication stack of the REMPLI system: a structure using power-lines and IPbased networks for communication, for data acquisition and control of energy distribution and consumption. It is furthermore prepared to use alternative communication media like GSM or analog modem connections. The REMPLI system provides communication service for existing applications, namely automated meter reading, energy billing and domotic applications. The communication stack, consisting of physical, network, transport, and application layer is described as well as the communication services provided by the system. We show how the peculiarities of the power-line communication influence the design of the communication stack, by introducing requirements to efficiently use the limited bandwidth, optimize traffic and implement fair use of the communication medium for the extensive communication partners.
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a multiple logical ring (MLR) approach, thus with multiple independent tokens, to which a specific bridging protocol extension, the inter-domain protocol (IDP), was proposed. The IDP offers compatibility with standard PROFIBUS, and includes mechanisms to support inter-cell mobility of wireless nodes. We advance that work by proposing a worst-case response timing analysis of the IDP.
Resumo:
The continuous improvement of Ethernet technologies is boosting the eagerness of extending their use to cover factory-floor distributed real time applications. Indeed, it is remarkable the considerable amount of research work that has been devoted to the timing analysis of Ethernet-based technologies in the past few years. It happens, however, that the majority of those works are restricted to the analysis of sub-sets of the overall computing and communication system, thus without addressing timeliness in a holistic fashion. To this end, we address an approach, based on simulation, aiming at extracting temporal properties of commercial-off-the-shelf (COTS) Ethernet-based factory-floor distributed systems. This framework is applied to a specific COTS technology, Ethernet/IP. We reason about the modeling and simulation of Ethernet/IP-based systems, and on the use of statistical analysis techniques to provide useful results on timeliness. The approach is part of a wider framework related to the research project INDEPTH NDustrial-Ethernet ProTocols under Holistic analysis.
Resumo:
In the past few years, a significant amount of work has been devoted to the timing analysis of Ethernet-based technologies. However, none of these address the problem of timeliness evaluation at a holistic level. This paper describes a research framework embracing this objective. It is advocated that, simulation models can be a powerful tool, not only for timeliness evaluation, but also to enable the introduction of less pessimistic assumptions in an analytical response time approach, which, most often, are afflicted with simplifications leading to pessimistic assumptions and, therefore, delusive results. To this end, we address a few inter-linked research topics with the purpose of setting a framework for developing tools suitable to extract temporal properties of commercial-off-the-shelf (COTS) factory-floor communication systems.
Resumo:
The marriage of emerging information technologies with control technologies is a major driving force that, in the context of the factory-floor, is creating an enormous eagerness for extending the capabilities of currently available fieldbus networks to cover functionalities not considered up to a recent past. Providing wireless capabilities to such type of communication networks is a big share of that effort. The RFieldbus European project is just one example, where PROFIBUS was provided with suitable extensions for implementing hybrid wired/wireless communication systems. In RFieldbus, interoperability between wired and wireless components is achieved by the use specific intermediate networking systems operating as repeaters, thus creating a single logical ring (SLR) network. The main advantage of the SLR approach is that the effort for protocol extensions is not significant. However, a multiple logical ring (MLR) approach provides traffic and error isolation between different network segments. This concept was introduced in, where an approach for a bridge-based architecture was briefly outlined. This paper will focus on the details of the inter-Domain Protocol (IDP), which is responsible for handling transactions between different network domains (wired or wireless) running the PROFIBUS protocol.
Resumo:
Controller area network (CAN) is a fieldbus network suitable for small-scale distributed computer controlled systems (DCCS), being appropriate for sending and receiving short real-time messages at speeds up to 1 Mbit/sec. Several studies are available on how to guarantee the real-time requirements of CAN messages, providing preruntime schedulability conditions to guarantee the real-time communication requirements of DCCS traffic. Usually, it is considered that CAN guarantees atomic multicast properties by means of its extensive error detection/signaling mechanisms. However, there are some error situations where messages can be delivered in duplicate or delivered only by a subset of the receivers, leading to inconsistencies in the supported applications. In order to prevent such inconsistencies, a middleware for reliable communication in CAN is proposed, taking advantage of CAN synchronous properties to minimize the runtime overhead. Such middleware comprises a set of atomic multicast and consolidation protocols, upon which the reliable communication properties are guaranteed. The related timing analysis demonstrates that, in spite of the extra stack of protocols, the real-time properties of CAN are preserved since the predictability of message transfer is guaranteed.
Resumo:
A preliminary version of this paper appeared in Proceedings of the 31st IEEE Real-Time Systems Symposium, 2010, pp. 239–248.
Resumo:
Fieldbus networks are becoming increasingly popular in industrial computer-controlled systems. More recently, there has been the desire to extend the capabilities of fieldbuses to cover functionalities not previously considered in such networks, with particular emphasis on industrial wireless communications. Thinking about wireless means considering hybrid wired/wireless solutions capable of interoperating with legacy (wired) systems. One possible solution is to use intermediate systems (IS) acting as repeaters to interconnect the wired and wireless parts. In contrast, we analyze a solution where intermediate systems are implemented as bridges/routers. We detail the main advantages in terms of dependability and timeliness, and propose mechanisms to manage message transactions and intercell mobility.
Resumo:
PROFIBUS is an international standard (IEC 61158) for factory-floor communications, with some hundreds of thousands of world-wide installations. However, it does not include any wireless capabilities. In this paper we propose a hybrid wired/wireless PROFIBUS solution where most of the design options are made in order to guarantee the proper real-time behaviour of the overall network. We address the timing unpredictability problems placed by the co-existence of heterogeneous transmission media in the same network. Moreover, we propose a novel solution to provide inter-cell mobility to PROFIBUS wireless nodes.
Resumo:
Determining the response time of message transactions is one of the major concerns in the design of any distributed computer-controlled system. Such response time is mainly dependent on the medium access delay, the message length and the transmission delay. While the medium access delay in fieldbus networks has been thoroughly studied in the last few years, the transmission delay has been almost ignored as it is considered that it can be neglected when compared to the length of the message itself. Nevertheless, this assumption is no longer valid when considering the case of hybrid wired/wireless fieldbus networks, where the transmission delay through a series of different mediums can be several orders of magnitude longer than the length of the message itself. In this paper, we show how to compute the duration of message transactions in hybrid wired/wireless fieldbus networks. This duration is mainly dependent on the duration of the request and response frames and on the number and type of physical mediums that the frames must cross between initiator and responder. A case study of a hybrid wired/wireless fieldbus network is also presented, where it becomes clear the interest of the proposed approach
Resumo:
Technological developments are pulling fieldbus networks to support a new wide class of applications, such as industrial multimedia applications. To enable its use in this kind of applications the TCP/IP suite of protocols can be integrated within a fieldbus stack, leading to a dual-stack approach that is briefly outlined in the paper. One important requirement that must be fulfilled by this approach is that the hard real-time guarantees provided to the control-related traffic ("native" fieldbus traffic) are kept. At the same time it must also provide the desired quality of service (QoS) to IP applications. The focus of the paper is on how, in such a dual-stack approach, QoS can be efficiently provided to IP applications requiring quasi-constant bandwidth.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-controlled systems. Therefore they constitute the foundation upon which real-time applications are to be implemented. A potential leap towards the use of fieldbus in such time-critical applications lies in the evaluation of its temporal behaviour. In the past few years several research works have been performed on a number of fieldbuses. However, these have mostly focused on the message passing mechanisms, without taking into account the communicating application tasks running in those distributed systems. The main contribution of this paper is to provide an approach for engineering real-time fieldbus systems where the schedulability analysis of the distributed system integrates both the characteristics of the application tasks and the characteristics of the message transactions performed by these tasks. In particular, we address the case of system where the Process-Pascal multitasking language is used to develop P-NET based distributed applications
Resumo:
Controller Area Network (CAN) is a fieldbus network suitable for small-scale Distributed Computer Controlled Systems, being appropriate for transferring short real-time messages. Nevertheless, it must be understood that the continuity of service is not fully guaranteed, since it may be disturbed by temporary periods of network inaccessibility [1]. In this paper, such temporary periods of network inaccessibility are integrated in the response time analysis of CAN networks. The achieved results emphasise that, in the presence of temporary periods of network inaccessibility, a CAN network is not able to provide different integrity levels to the supported applications, since errors in low priority messages interfere with the response time of higher priority message streams.
Resumo:
In this paper we address the real-time capabilities of P-NET, which is a multi-master fieldbus standard based on a virtual token passing scheme. We show how P-NET’s medium access control (MAC) protocol is able to guarantee a bounded access time to message requests. We then propose a model for implementing fixed prioritybased dispatching mechanisms at each master’s application level. In this way, we diminish the impact of the first-come-first-served (FCFS) policy that P-NET uses at the data link layer. The proposed model rises several issues well known within the real-time systems community: message release jitter; pre-run-time schedulability analysis in non pre-emptive contexts; non-independence of tasks at the application level. We identify these issues in the proposed model and show how results available for priority-based task dispatching can be adapted to encompass priority-based message dispatching in P-NET networks.
Resumo:
In this paper we address the ability of WorldFIP to cope with the real-time requirements of distributed computer-controlled systems (DCCS). Typical DCCS include process variables that must be transferred between network devices both in a periodic and sporadic (aperiodic) basis. The WorldFIP protocol is designed to support both types of traffic. WorldFIP can easily guarantee the timing requirements for the periodic traffic. However, for the aperiodic traffic more complex analysis must be made in order to guarantee its timing requirements. This paper describes work that is being carried out to extend previous relevant work, in order to include the actual schedule for the periodic traffic in the worst-case response time analysis of sporadic traffic in WorldFIP networks