957 resultados para Hype Cycle Model
Resumo:
Contemporary models of contrast integration across space assume that pooling operates uniformly over the target region. For sparse stimuli, where high contrast regions are separated by areas containing no signal, this strategy may be sub-optimal because it pools more noise than signal as area increases. Little is known about the behaviour of human observers for detecting such stimuli. We performed an experiment in which three observers detected regular textures of various areas, and six levels of sparseness. Stimuli were regular grids of horizontal grating micropatches, each 1 cycle wide. We varied the ratio of signals (marks) to gaps (spaces), with mark:space ratios ranging from 1 : 0 (a dense texture with no spaces) to 1 : 24. To compensate for the decline in sensitivity with increasing distance from fixation, we adjusted the stimulus contrast as a function of eccentricity based on previous measurements [Baldwin, Meese & Baker, 2012, J Vis, 12(11):23]. We used the resulting area summation functions and psychometric slopes to test several filter-based models of signal combination. A MAX model failed to predict the thresholds, but did a good job on the slopes. Blanket summation of stimulus energy improved the threshold fit, but did not predict an observed slope increase with mark:space ratio. Our best model used a template matched to the sparseness of the stimulus, and pooled the squared contrast signal over space. Templates for regular patterns have also recently been proposed to explain the regular appearance of slightly irregular textures (Morgan et al, 2012, Proc R Soc B, 279, 2754–2760)
Resumo:
A társadalombiztosítási nyugdíjrendszer finanszírozása pusztán a demográfiai folyamatok következtében is jelentős terhet ró majd a költségvetésére, amin a különböző parametrikus és paradigmatikus nyugdíjreformok enyhíthetnek. A reformok azonban hosszú távon olyan viselkedési, munkakínálati reakciókat válthatnak ki, amelyek alapvetően változtatják meg a költségvetési hatásokat. Az 1999 és 2009 között Magyarországon megfigyelhető átlagos munka- és nyugdíjkorprofilok bemutatása után arra tettünk kísérletet, hogy mikroökonómiai alapon határozzuk meg néhány alapvető parametrikus nyugdíjreformnak a férfiak életciklus-munkakínálatára gyakorolt hatását. A modell paramétereit a magyar gazdaság 1999 és 2009 közötti jellemzőinek megfelelően kalibráltuk. Eredményeink szerint a helyettesítési ráta csökkentése, a nyugdíjkorhatár emelése és a svájci indexálás árindexálásra cserélése összességében számottevően növeli az egyes képzettségi csoportok munkakínálatát, s a fiatalabb korosztályok javára csoportosítja át az életciklus-munkakínálatot, míg a nyugdíj kiszámításához figyelembe vett évek számának megváltoztatása nem hoz jelentős aggregált hatást, és nem jár a munkakínálat korcsoportok közötti átcsoportosításával. ____ Financing the social-security pension system will weigh heavily on the government budget in developed countries, merely through the projected demographic processes. The burden could be eased by various parametric and paradigmatic pension reforms, but in the long run such reforms may trigger behavioural, labour-supply responses, which may alter the budgetary effects fundamentally. Having described the average work and pension profiles in Hungary between 1999 and 2009, the authors use a microeconomic approach in an attempt to assess the effect of certain parametric pension reforms on the life-cycle labour supply of males. The parameters for the model were calibrated for the characteristics of the Hungarian economy. The results show that decreasing the replacement rate, increasing the retirement age and replacing Swiss indexation of pensions by price indexation cause a considerable increase in the labour supply of all education-level groups, whereas changing the number of years considered in computing pensions does not have a significant aggregate effect. While introducing price indexation increases the labour supply of all cohorts by the same amount, the other reforms reallocate the life-cycle labour supply, mainly towards younger age-groups.
Resumo:
An integrated flow and transport model using MIKE SHE/MIKE 11 software was developed to predict the flow and transport of mercury, Hg(II), under varying environmental conditions. The model analyzed the impact of remediation scenarios within the East Fork Poplar Creek watershed of the Oak Ridge Reservation with respect to downstream concentration of mercury. The numerical simulations included the entire hydrological cycle: flow in rivers, overland flow, groundwater flow in the saturated and unsaturated zones, and evapotranspiration and precipitation time series. Stochastic parameters and hydrologic conditions over a five year period of historical hydrological data were used to analyze the hydrological cycle and to determine the prevailing mercury transport mechanism within the watershed. Simulations of remediation scenarios revealed that reduction of the highly contaminated point sources, rather than general remediation of the contaminant plume, has a more direct impact on downstream mercury concentrations.
Resumo:
The current study applies a two-state switching regression model to examine the behavior of a hypothetical portfolio of ten socially responsible (SRI) equity mutual funds during the expansion and contraction phases of US business cycles between April 1991 and June 2009, based on the Carhart four-factor model, using monthly data. The model identified a business cycle effect on the performance of SRI equity mutual funds. Fund returns were less volatile during expansion/peaks than during contraction/troughs, as indicated by the standard deviation of returns. During contraction/troughs, fund excess returns were explained by the differential in returns between small and large companies, the difference between the returns on stocks trading at high and low Book-to-Market Value, the market excess return over the risk-free rate, and fund objective. During contraction/troughs, smaller companies offered higher returns than larger companies (ci = 0.26, p = 0.01), undervalued stocks out-performed high growth stocks (h i = 0.39, p <0.0001), and funds with growth objectives out-performed funds with other objectives (oi = 0.01, p = 0.02). The hypothetical SRI portfolio was less risky than the market (bi = 0.74, p <0.0001). During expansion/peaks, fund excess returns were explained by the market excess return over the risk-free rate, and fund objective. Funds with other objectives, such as balanced funds and income funds out-performed funds with growth objectives (oi = −0.01, p = 0.03). The hypothetical SRI portfolio exhibited similar risk as the market (bi = 0.93, p <0.0001). The SRI investor adds a third criterion to the risk and return trade-off of traditional portfolio theory. This constraint is social performance. The research suggests that managers of SRI equity mutual funds may diminish value by using social and ethical criteria to select stocks, but add value by superior stock selection. The result is that the performance of SRI mutual funds is very similar to that of the market. There was no difference in the value added among secular SRI, religious SRI, and vice screens.
Resumo:
Eyewall replacement cycle (ERC) is frequently observed during the evolution of intensifying Tropical Cyclones (TCs). Although intensely studied in recent years, the underlying mechanisms of ERC are still poorly understood, and the forecast of ERC remains a great challenge. To advance our understanding of ERC and provide insights in improvement of numerical forecast of ERC, a series of numerical simulations is performed to investigate ERCs in TC-like vortices on a f-plane. The simulated ERCs possess key features similar to those observed in real TCs including the formation of a secondary tangential wind maximum associated with the outer eyewall. The Sawyer-Eliassen equation and tangential momentum budget analyses are performed to diagnose the mechanisms underlying the secondary eyewall formation (SEF) and ERC. Our diagnoses reveal crucial roles of outer rainband heating in governing the formation and development of the secondary tangential wind maximum and demonstrate that the outer rainband convection must reach a critical strength relative to the eyewall before SEF and the subsequent ERC can occur. A positive feedback among low-level convection, acceleration of tangential winds in the boundary layer, and surface evaporation that leads to the development of ERC and a mechanism for the demise of inner eyewall that involves interaction between the transverse circulations induced by eyewall and outer rainband convection are proposed. The tangential momentum budget indicates that the net tendency of tangential wind is a small residual resultant from a large cancellation between tendencies induced by the resolved and sub-grid scale (SGS) processes. The large SGS contribution to the tangential wind budget explains different characteristics of ERC shown in previous numerical studies and poses a great challenge for a timely correct forecast of ERC. The sensitivity experiments show that ERCs are strongly subjected to model physics, vortex radial structure and background wind. The impact of model physics on ERC can be well understood with the interaction among eyewall/outer rainband heating, radilal inflow in the boundary layer, surface layer turbulent processes, and shallow convection in the moat. However, further investigations are needed to fully understand the exhibited sensitivities of ERC to vortex radial structure and background wind.
Resumo:
An integrated flow and transport model using MIKE SHE/MIKE 11 software was developed to predict the flow and transport of mercury, Hg(II), under varying environmental conditions. The model analyzed the impact of remediation scenarios within the East Fork Poplar Creek watershed of the Oak Ridge Reservation with respect to downstream concentration of mercury. The numerical simulations included the entire hydrological cycle: flow in rivers, overland flow, groundwater flow in the saturated and unsaturated zones, and evapotranspiration and precipitation time series. Stochastic parameters and hydrologic conditions over a five year period of historical hydrological data were used to analyze the hydrological cycle and to determine the prevailing mercury transport mechanism within the watershed. Simulations of remediation scenarios revealed that reduction of the highly contaminated point sources, rather than general remediation of the contaminant plume, has a more direct impact on downstream mercury concentrations.
Resumo:
The shallow water configuration of the gulf of Trieste allows the propagation of the stress due to wind and waves along the whole water column down to the bottom. When the stress overcomes a particular threshold it produces resuspension processes of the benthic detritus. The benthic sediments in the North Adriatic are rich of organic matter, transported here by many rivers. This biological active particulate, when remaining in the water, can be transported in all the Adriatic basin by the basin-wide circulation. In this work is presented a first implementation of a resuspension/deposition submodel in the oceanographic coupled physical-biogeochemical 1-dimensional numerical model POM-BFM. At first has been considered the only climatological wind stress forcing, next has been introduced, on the surface, an annual cycle of wave motion and finally have been imposed some exceptional wave event in different periods of the year. The results show a strong relationship between the efficiency of the resuspension process and the stratification of the water column. During summer the strong stratification can contained a great quantity of suspended matter near to the bottom, while during winter even a low concentration of particulate can reach the surface and remains into the water for several months without settling and influencing the biogeochemical system. Looking at the biologic effects, the organic particulate, injected in the water column, allow a sudden growth of the pelagic bacteria which competes with the phytoplankton for nutrients strongly inhibiting its growth. This happen especially during summer when the suspended benthic detritus concentration is greater.
Resumo:
Single-molecule manipulation experiments of molecular motors provide essential information about the rate and conformational changes of the steps of the reaction located along the manipulation coordinate. This information is not always sufficient to define a particular kinetic cycle. Recent single-molecule experiments with optical tweezers showed that the DNA unwinding activity of a Phi29 DNA polymerase mutant presents a complex pause behavior, which includes short and long pauses. Here we show that different kinetic models, considering different connections between the active and the pause states, can explain the experimental pause behavior. Both the two independent pause model and the two connected pause model are able to describe the pause behavior of a mutated Phi29 DNA polymerase observed in an optical tweezers single-molecule experiment. For the two independent pause model all parameters are fixed by the observed data, while for the more general two connected pause model there is a range of values of the parameters compatible with the observed data (which can be expressed in terms of two of the rates and their force dependencies). This general model includes models with indirect entry and exit to the long-pause state, and also models with cycling in both directions. Additionally, assuming that detailed balance is verified, which forbids cycling, this reduces the ranges of the values of the parameters (which can then be expressed in terms of one rate and its force dependency). The resulting model interpolates between the independent pause model and the indirect entry and exit to the long-pause state model
Resumo:
Acknowledgements. This work was mainly funded by the EU FP7 CARBONES project (contracts FP7-SPACE-2009-1-242316), with also a small contribution from GEOCARBON project (ENV.2011.4.1.1-1-283080). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program; DE-FG02-04ER63917 and DE-FG02-04ER63911), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. Philippe Ciais acknowledges support from the European Research Council through Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P”. The authors wish to thank M. Jung for providing access to the GPP MTE data, which were downloaded from the GEOCARBON data portal (https://www.bgc-jena.mpg.de/geodb/projects/Data.php). The authors are also grateful to computing support and resources provided at LSCE and to the overall ORCHIDEE project that coordinate the development of the code (http://labex.ipsl.fr/orchidee/index.php/about-the-team).
Resumo:
This paper examines how the introduction and use of a new information system affects and is affected by the values of a diverse professional workforce. It uses the example of lecture capture systems in a university. Its contribution is to combine two concepts taken from actor-network theory, namely accumulation and inscription, and combine them with an integrated framework of diversity management. A model is developed of accumulation cycles in lecture capture usage, involving multiple interacting actants, including the broader environment, management commitment to diversity, work group characteristics, individual practices and the affordances of technology. Using this model, alternative future inscriptions can be identified - an optimal one, which enhances professional values, as a result of a virtuous accumulation cycle, or a sub-optimal one, as a result of a vicious cycle. It identifies diversity management as an important influence on how professional values are enhanced, modified or destroyed.
Resumo:
Eyewall replacement cycle (ERC) is frequently observed during the evolution of intensifying Tropical Cyclones (TCs). Although intensely studied in recent years, the underlying mechanisms of ERC are still poorly understood, and the forecast of ERC remains a great challenge. To advance our understanding of ERC and provide insights in improvement of numerical forecast of ERC, a series of numerical simulations is performed to investigate ERCs in TC-like vortices on a f-plane. The simulated ERCs possess key features similar to those observed in real TCs including the formation of a secondary tangential wind maximum associated with the outer eyewall. The Sawyer-Eliassen equation and tangential momentum budget analyses are performed to diagnose the mechanisms underlying the secondary eyewall formation (SEF) and ERC. Our diagnoses reveal crucial roles of outer rainband heating in governing the formation and development of the secondary tangential wind maximum and demonstrate that the outer rainband convection must reach a critical strength relative to the eyewall before SEF and the subsequent ERC can occur. A positive feedback among low-level convection, acceleration of tangential winds in the boundary layer, and surface evaporation that leads to the development of ERC and a mechanism for the demise of inner eyewall that involves interaction between the transverse circulations induced by eyewall and outer rainband convection are proposed. The tangential momentum budget indicates that the net tendency of tangential wind is a small residual resultant from a large cancellation between tendencies induced by the resolved and sub-grid scale (SGS) processes. The large SGS contribution to the tangential wind budget explains different characteristics of ERC shown in previous numerical studies and poses a great challenge for a timely correct forecast of ERC. The sensitivity experiments show that ERCs are strongly subjected to model physics, vortex radial structure and background wind. The impact of model physics on ERC can be well understood with the interaction among eyewall/outer rainband heating, radilal inflow in the boundary layer, surface layer turbulent processes, and shallow convection in the moat. However, further investigations are needed to fully understand the exhibited sensitivities of ERC to vortex radial structure and background wind.
Resumo:
Changes in the Earth's orbit lead to changes in the seasonal and meridional distribution of insolation. We quantify the influence of orbitally induced changes on the seasonal temperature cycle in a transient simulation of the last 6000 years - from the mid-Holocene to today - using a coupled atmosphere-ocean general circulation model (ECHAM5/MPI-OM) including a land surface model (JSBACH). The seasonal temperature cycle responds directly to the insolation changes almost everywhere. In the Northern Hemisphere, its amplitude decreases according to an increase in winter insolation and a decrease in summer insolation. In the Southern Hemisphere, the opposite is true. Over the Arctic Ocean, decreasing summer insolation leads to an increase in sea-ice cover. The insulating effect of sea ice between the ocean and the atmosphere leads to decreasing heat flux and favors more "continental" conditions over the Arctic Ocean in winter, resulting in strongly decreasing temperatures. Consequently, there are two competing effects: the direct response to insolation changes and a sea-ice insulation effect. The sea-ice insulation effect is stronger, and thus an increase in the amplitude of the seasonal temperature cycle over the Arctic Ocean occurs. This increase is strongest over the Barents Shelf and influences the temperature response over northern Europe. We compare our modeled seasonal temperatures over Europe to paleo reconstructions. We find better agreements in winter temperatures than in summer temperatures and better agreements in northern Europe than in southern Europe, since the model does not reproduce the southern European Holocene summer cooling inferred from the paleo reconstructions. The temperature reconstructions for northern Europe support the notion of the influence of the sea-ice insulation effect on the evolution of the seasonal temperature cycle.
Resumo:
The effects of ocean acidification on the life-cycle stages of the coccolithophore Emiliania huxleyi and their by light were examined. Calcifying diploid and noncalcifying haploid cells (Roscoff culture collection 1216 and 1217) were acclimated to present-day and elevated CO2 partial pressures (PCO2; 38.5 vs. 101.3 Pa, ., 380 vs. 1000 matm) under low and high light (50 vs. 300 mmol photons m-2 s-1). Growth rates as well as quotas and production rates of C and N were measured. Sources of inorganic C for biomass buildup were using a 14C disequilibrium assay. Photosynthetic O2 evolution was measured as a function of dissolved inorganic C and light by means of membrane-inlet mass spectrometry. The diploid stage responded to elevated PCO2 by shunting resources from the production of particulate inorganic C toward organic C yet keeping the production of total particulate C constant. As the effect of ocean acidification was stronger under low light, the diploid stage might be less affected by increased acidity when energy availability is high. The haploid stage maintained elemental composition and production rates under elevated PCO2. Although both life-cycle stages involve different ways of dealing with elevated PCO2, the responses were generally modulated by energy availability, being typically most pronounced under low light. Additionally, PCO2 responses resembled those induced by high irradiances, indicating that ocean acidification affects the interplay between energy-generating processes (photosynthetic light reactions) and processes competing for energy (biomass buildup and calcification). A conceptual model is put forward explaining why the magnitude of single responses is determined by energy availability.
Resumo:
Today the deep western boundary current (DWBC) east of New Zealand is the most important route for deep water entering the Pacific Ocean. Large-scale changes in deep water circulation patterns are thought to have been associated with the development of the East Antarctic Ice Sheet (EAIS) close to the main source of bottom water for the DWBC. Here we reconstruct the changing speed of the southwest Pacific DWBC during the middle Miocene from ~15.5-12.5 Ma, a period of significant global ice accumulation associated with EAIS growth. Sortable silt mean grain sizes from Ocean Drilling Program Site 1123 reveal variability in the speed of the Pacific inflow on the timescale of the 41 kyr orbital obliquity cycle. Similar orbital period flow changes have recently been demonstrated for the Pleistocene epoch. Collectively, these observations suggest that a strong coupling between changes in the speed of the deep Pacific inflow and high-latitude climate forcing may have been a persistent feature of the global thermohaline circulation system for at least the past 15 Myr. Furthermore, long-term changes in flow speed suggest an intensification of the DWBC under an inferred increase in Southern Component Water production. This occurred at the same time as decreasing Tethyan outflow and major EAIS growth between ~15.5 and 13.5 Ma. These results provide evidence that a major component of the deep thermohaline circulation was associated with the middle Miocene growth of the EAIS and support the view that this time interval represents an important step in the development of the Neogene icehouse climate.
Resumo:
Sporomorphs and dinoflagellate cysts from site GIK16867 in the northern Angola Basin record the vegetation history of the West African forest during the last 700 ka in relation to changes in salinity and productivity of the eastern Gulf of Guinea. During most cool and cold periods, the Afromontane forest, rather than the open grass-rich dry forest, expanded to lower altitudes partly replacing the lowland rain forest of the borderlands east of the Gulf of Guinea. Except in Stage 3, when oceanic productivity was high during a period of decreased atmospheric circulation, high oceanic productivity is correlated to strong winds. The response of marine productivity in the course of a climatic cycle, however, is earlier than that of wind vigour and makes wind-stress-induced oceanic upwelling in the area less likely. Monsoon variation is well illustrated by the pollen record of increased lowland rain forest that is paired to the dinoflagellate cyst record of decreased salinity forced by increased precipitation and run-off.