999 resultados para Hydrological stability
Resumo:
Unlike previous mechanical actuator loading methods, in this study, a hydrodynamic loading method was employed in a flow flume for simulating ocean currents induced submarine pipeline stability on a sandy seabed. It has been observed that, in the process of pipeline losing lateral stability in currents, there usually exist three characteristic times: (1) onset of sand scour; (2) slight lateral displacement of pipeline; and (3) breakout of pipeline. An empirical linear relationship is established between the dimensionless submerged weight of pipeline and Froude number for describing pipeline lateral stability in currents, in which the current-pipe-soil coupling effects are reflected. Scale effects are examined with the method of "modeling of models," and the sand particle size effects on pipeline stability are also discussed. Moreover, the pipeline stability in currents is compared with that in waves, which indicates that the pipeline laid directly upon the sandy seabed is more laterally stable in currents than in waves.
Resumo:
Oblique detonation structures induced by the wedge in the supersonic combustible gas mixtures are simulated numerically. The results show that the stationary oblique detonation structures are influenced by the gas flow Mach number, and a novel critical oblique detonation structure, which is characterized by a more complicated wave system, appears in the low Mach number cases. By introducing the inflow disturbance, its nonstationary evolution process is illustrated and its stability is verified.
Resumo:
The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.