892 resultados para Hydrogen Sulphide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic activity of Ni/La(2)O(3)-Al(2)O(3) Catalysts modified with noble metals(Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by ICP, S(BFT), X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of La(2)O(3) dispersed on the alumina. The promoting effect of noble metals included a marked decrease in the reduction temperatures of NiO species interacting with the support. due to the hydrogen spillover effect, facilitating greatly the reduction of the promoted catalysts. it was seen that the addition of noble metal stabilized the Ni sites in the reduced state throughout the reaction, increasing ethanol conversion and decreasing coke formation, irrespective of the nature or loading of the noble metal. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of noble metal addition on the catalytic properties of Co/Al2O3 was evaluated for the steam reforming of methane. Co/Al2O3 catalysts were prepared with addition of different noble metals (Pt, Pd, Ru and Ir 0.3 wt.%) by a wetness impregnation method and characterized by UV-vis spectroscopy, temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) of the reduced catalysts. The UV-vis spectra of the samples indicate that, most likely, large amounts of the supported cobalt form Co species in which cobalt is in octahedral and tetrahedral symmetries. No peaks assigned to cobalt species from aluminate were found for the promoted and unpromoted cobalt catalysts. TPO analyses showed that the addition of the noble metals on the Co/Al2O3 catalyst leads to a more stable metallic state and less susceptible to the deactivation process during the reforming reaction. The Co/Al2O3 promoted with Pt showed higher stability and selectivity for H(2)production during the methane steam reforming. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kraft pulp is currently bleached largely by the elemental chlorine free (ECF) technology with oxygen, chlorine dioxide, and hydrogen as active agents. This technology brought about significant environmental improvements in relation to standard processes based on chlorine gas and hypochlorite, but there is still need for further improvements. This study presents a novel environmentally friendly bleaching stage - the so-called `hydrogen peroxide in supercritical carbon dioxide`, P((SC-CO2)) - that can be adapted to current ECF bleaching processes, with preference in cases where hydrogen peroxide is already used. In this study, the P((SC-CO2)) stage was evaluated as a replacement to the last peroxide stage of the D(EP)DP bleaching sequence and to the first peroxide stage of the D(EP)DP sequence, for an oxygen delignified eucalypt kraft-O(2) pulp. The P((SC-CO2)) stage was run with 0.5% hydrogen peroxide, at 15% consistency, 70 degrees C, and 73 bar. The reaction time was 30 min. The performances of regular P stages and the new P((SC-CO2)) stage were compared. Promising results were observed with the DEP((SC-CO2))DP sequence; the P((SC-CO2)) decreased kappa number from 2.7 to 2.1, and the hexenuronic acid groups from 17.0 to 12.4 mmol kg(-1). The P((SC-CO2)) stage showed poor performance when applied in the D(EP)DP((SC-CO2)) sequence. It is concluded that the process presents potential but requires further optimization to improve selectivity and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performance of Co/Al2O3 catalysts promoted with small amounts noble metals (Pt, Pd, Ru, Ir) for steam reforming of ethanol (SRE) has been investigated. The catalysts were characterized by the energy dispersive X-ray, X-ray diffraction, BET surface area, X-ray absorption fine structure and temperature reduction programmed techniques. The results showed that the promoting effect of noble metals included a marked decrease of the reduction temperatures of both Co3O4 and cobalt surface species interacting with the support due to the hydrogen spillover effect, leading to a significant increase of the reducibilities of the promoted catalysts. The better catalytic performance for the ethanol steam reforming at 400 degrees C was obtained for the CoRu/Al2O3 catalyst, which presented an effluent gaseous mixture with the highest H, selectivity and the reasonable low CO formation. (C) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CuO/CeO(2), CuO/Al(2)O(3) and CuO/CeO(2)-Al(2)O(3) catalysts, with CuO loading varying from 1 to 5 wt.%, were prepared by the citrate method and applied to the preferential oxidation of carbon monoxide in a reaction medium containing large amounts of hydrogen (PROX-CO). The compounds were characterized ex situ by X-ray diffraction, specific surface area measurements, temperature-programmed reduction and temperature-programmed reduction of oxidized surfaces; XANES-PROX in situ experiments were also carried out to study the copper oxidation state under PROX-CO conditions. These analyses showed that in the reaction medium the Cu(0) is present as dispersed particles. On the ceria, these metallic particles are smaller and more finely dispersed, resulting in a stronger metal-support interaction than in CuO/Al(2)O(3) or CuO/CeO(2)-Al(2)O(3) catalysts, providing higher PROX-CO activity and better selectivity in the conversion of CO to CO(2) despite the greater BET area presented by samples supported on alumina. It is also shown that the lower CuO content, the higher metal dispersion and consequently the catalytic activity. The redox properties of the ceria support also contributed to catalytic performance. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of two different conductive carbon-black pigments, Vulcan XC-72 R and Printex L6, for the electrogeneration of hydrogen peroxide (H(2)O(2)) by reducing dissolved oxygen in an alkaline solution was performed. The materials were physically characterized by X-ray diffraction (XRD), Fourier transform infrared attenuated total reflection (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). XRD shows the presence of SO(2) and ATR-FTIR technique indicates a difference in NO and SO(2) functional groups between the two carbon pigments. XPS indicated presence of SO and NO and more oxygenated acid species on Printex L6. A rotating ring-disk electrode was used for electrochemical analysis of the oxygen reduction reaction (ORR). The results showed that the Printex L6 was better than Vulcan XC-72 R for H(2)O(2) production. Results also indicate that the number of electrons transferred in the ORR for Printex L6 and Vulcan XC-72 R were 2.2 and 2.9, respectively, while the percentages of H(2)O(2) formed were 88% and 51%. Scanning electrochemistry microscopy images confirmed the higher amount of H(2)O(2) formed in the Printex L6 pigment. Printex L6 was shown to be a more promising for H(2)O(2) production than Vulcan XC-72 R, while the latter was shown to have more potential for fuel cells. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project verified the potential for the production of hydrogen via water electrolysis by using the exceeding electrical energy resultant from alcohol and sugar plants that use sugar cane bagasse as fuel. The studies were carried out in cogeneration plants authorized by the Electrical Energy National Agency (ANEEL). The processing history of sugar cane considered was based on the 2006/2007 harvests. The total bagasse produced, electrical energy generated and exceeding electrical energy in a year were calculated. It was obtained an average energy consumption value of 5.2 kWh Nm(-3) and the hydrogen production costs regarding the amount of sugar cane processed that ranged from US$ 0.50 to US$ 0.75 Nm(-3). The results pointed that the costs for the production of hydrogen via the bagasse exceeding energy are close to the production costs that use other sources of energy. As the energy generated from the bagasse is a renewable one, this alternative for the production of hydrogen is economical and environmentally viable. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [(Mn4O5)-O-IV(terpy)(4)(H2O)(2)](6+) complex, show great potential for electrode modification by electropolymerization using cyclic voltammetry. The voltammetric behavior both in and after electropolymerization process were also discussed, where the best condition of electropolymerization was observed for low scan rate and 50 potential cycles. A study in glass electrode for better characterization of polymer was also performed. Electrocatalytic process by metal centers of the conducting polymer in H2O2 presence with an increase of anodic current at 0.85 V vs. SCE can be observed. The sensor showed great response from 9.9 x 10(-5) to 6.4 x 10(-4) mol L-1 concentration range with a detection limit of 8.8 x 10(-5) mol L-1, where the electrocatalytic mechanism was based on oxidation of H2O2 to H2O with consequently reduction of Mn-IV to Mn-III. After, the Mn-III ions are oxidized electrochemically to Mn-IV ions. (C) 2012 Elsevier Ltd .... Selection and/or peer-review under responsibility of the Symposium Cracoviense Sp. z.o.o.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorhexidine, even at low concentrations, is toxic for a variety of eukaryotic cells; however, its effects on host immune cells are not well known. We evaluated in vitro chlorhexidine-induced cytotoxicity and its effects on reactive oxygen/nitrogen intermediate induction by murine peritoneal macrophages. Thioglycollate-induced cells were obtained from Swiss mice by peritoneal lavage with 5 ml of 10 mM phosphate-buffered saline, washed twice and resuspended (10(6) cells/ml) in appropriate medium for each test. Cell preparations contained more than 95% macrophages. The cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the presence of hydrogen peroxide (H2O2) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively. The midpoint cytotoxicity values for 1- and 24-h exposures were 61.12 ± 2.46 and 21.22 ± 2.44 µg/ml, respectively. Chlorhexidine did not induce synthesis or liberation of reactive oxygen/nitrogen intermediates. When macrophages were treated with various sub-toxic doses for 1 h (1, 5, 10, and 20 µg/ml) and 24 h (0.5, 1, and 5 µg/ml) and stimulated with 200 nM phorbol myristate acetate (PMA) solution, the H2O2 production was not altered; however, the NO production induced by 10 µg/ml lipopolysaccharide (LPS) solution varied from 14.47 ± 1.46 to 22.35 ± 1.94 µmol/l and 13.50 ± 1.42 to 20.44 ± 1.40 µmol/l (N = 5). The results showed that chlorhexidine has no immunostimulating activity and sub-toxic concentrations did not affect the response of macrophages to the soluble stimulus PMA but can interfere with the receptor-dependent stimulus LPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)