886 resultados para Human factors engineering.
Resumo:
Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.
Resumo:
Sustainable management of solid waste is a global concern, as exemplified by the United Nations Millennium Development Goals (MDG) that 191 member states support. The seventh MDG indirectly advocates for municipal solid waste management (MSWM) by aiming to ensure environmental sustainability into countries’ policies and programs and reverse negative environmental impact. Proper MSWM will likely result in relieving poverty, reducing child mortality, improving maternal health, and preventing disease, which are MDG goals one, four, five, and six, respectively (UNMDG, 2005). Solid waste production is increasing worldwide as the global society strives to obtain a decent quality of life. Several means exist in which the amount of solid waste going to a landfill can be reduced, such as incineration with energy production, composting of organic wastes, and material recovery through recycling, which are all considered sustainable methods by which to manage MSW. In the developing world, composting is already a widely-accepted method to reduce waste fated for the landfill, and incineration for energy recovery can be a costly capital investment for most communities. Therefore, this research focuses on recycling as a solution to the municipal solid waste production problem while considering the three dimensions of sustainability environment, society, and economy. First, twenty-three developing country case studies were quantitatively and qualitatively examined for aspects of municipal solid waste management. The municipal solid waste (MSW) generation and recovery rates, as well as the composition were compiled and assessed. The average MSW generation rate was 0.77 kg/person/day, with recovery rates varying from 5 – 40%. The waste streams of nineteen of these case studies consisted of 0 – 70% recyclable material and 17 – 80% organic material. All twenty-three case studies were analyzed qualitatively by identifying any barriers or incentives to recycling, which justified the creation of twelve factors influencing sustainable municipal solid waste management (MSWM) in developing countries. The presence of regulations, enforcement of laws, and use of incentive schemes constitutes the first factor, Government Policy. Cost of MSWM operations, the budget allocated to MSWM by local to national governments, as well as the stability and reliability of funds comprise the Government Finances factor influencing recycling in the third world. Many case studies indicated that understanding features of a waste stream such as the generation and recovery rates and composition is the first measure in determining proper management solutions, which forms the third factor Waste Characterization. The presence and efficiency of waste collection and segregation by scavengers, municipalities, or private contractors was commonly addressed by the case studies, which justified Waste Collection and Segregation as the fourth factor. Having knowledge of MSWM and an understanding of the linkages between human behavior, waste handling, and health/sanitation/environment comprise the Household Education factor. Individuals’ income influencing waste handling behavior (e.g., reuse, recycling, and illegal dumping), presence of waste collection/disposal fees, and willingness to pay by residents were seen as one of the biggest incentives to recycling, which justified them being combined into the Household Economics factor. The MSWM Administration factor was formed following several references to the presence and effectiveness of private and/or public management of waste through collection, recovery, and disposal influencing recycling activity. Although the MSWM Personnel Education factor was only recognized by six of the twenty-two case studies, the lack of trained laborers and skilled professionals in MSWM positions was a barrier to sustainable MSWM in every case but one. The presence and effectiveness of a comprehensive, integrative, long-term MSWM strategy was highly encouraged by every case study that addressed the tenth factor, MSWM Plan. Although seemingly a subset of private MSWM administration, the existence and profitability of market systems relying on recycled-material throughput, involvement of small businesses, middlemen, and large industries/exporters is deserving of the factor Local Recycled-Material Market. Availability and effective use of technology and/or human workforce and the safety considerations of each were recurrent barriers and incentives to recycling to warrant the Technological and Human Resources factor. The Land Availability factor takes into consideration land attributes such as terrain, ownership, and development which can often times dictate MSWM. Understanding the relationships among the twelve factors influencing recycling in developing countries, made apparent the collaborative nature required of sustainable MSWM. Factors requiring the greatest collaborative inputs include waste collection and segregation, MSWM plan, and local recycled-material market. Aligning each factor to the societal, environmental, and economic dimensions of sustainability revealed the motives behind the institutions contributing to each factor. A correlation between stakeholder involvement and sustainability existed, as supported by the fact that the only three factors driven by all three dimensions of sustainability were the same three that required the greatest collaboration with other factors. With increasing urbanization, advocating for improved health for all through the MDG, and changing consumption patterns resulting in increasing and more complex waste streams, the utilization of the collaboration web offered by this research is ever needed in the developing world. Through its use, the institutions associated with each of the twelve factors can achieve a better understanding of the collaboration necessary and beneficial for more sustainable MSWM.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
BACKGROUND AND AIMS: Well-differentiated neuro-endocrine ileal carcinoids are composed of serotonin-producing enterochromaffin (EC) cells. Life expectancy is determined by metastatic spread to the liver because medical treatment options are still very limited. Selective inhibition of angiogenesis or lymphangiogenesis might prevent tumour growth and metastatic spread. We examined the role of the vascular endothelial growth factors (VEGFs) A, B, C, D, and their receptors (VEGFRs) 1, 2, 3 in angiogenesis and lymphangiogenesis of ileal EC cell carcinoids with and without liver metastases. METHODS: The expression of various VEGFs and VEGFRs was determined by quantitative real-time RT-PCR in healthy mucosa, primary tumour, lymph node metastases and liver metastases of 25 patients with ileal EC cell carcinoids. Microvessel density (MVD) was determined by CD-31 staining in primary tumours and lymphatic vessel density (LVD) by LYVE-1 staining. VEGF expression levels, MVD, LVD, and patients' survival time were correlated using logistic regression and Kaplan-Meier survival analysis. RESULTS: VEGF-A was highly expressed with no difference between normal mucosa and tumours. VEGF-B and -D as well as VEGFR-1 and -2 expression levels were significantly increased in the tumours when compared to normal mucosa. Patients with liver metastasis, however, had a significantly lower expression of the factors A, B, and C and the receptors 2 and 3. MVD in primary tumours positively correlated with the expression of VEGF ligands and their receptors, except for VEGF-D. LVD did not correlate with any VEGF ligand or receptor. Interestingly, low expression levels of VEGF-B were associated with poor survival. CONCLUSION: Patients with more aggressive metastatic spreading had relatively decreased expression levels of VEGF ligands and receptors. Thus, anti-angiogenic therapy may not be a suitable target in metastatic ileal EC cell carcinoids.
Resumo:
Blood supply is a critical issue in most tissue engineering approaches for large defect healing. As vessel ingrowth from surrounding tissues is proven to be insufficient, current strategies are focusing on the neo-vascularisation process. In the present study, we developed an in vitro pre-vascularised construct using 3D polyurethane (PU) scaffolds, based on the association of human Endothelial Progenitor Cells (EPC, CD34+ and CD133+) with human Mesenchymal Stem Cells (MSC). We showed the formation of luminal tubular structures in the co-seeded scaffolds as early as day 7 in culture. These tubular structures were proven positive for endothelial markers von Willebrand Factor and PECAM-1. Of special significance in our constructs is the presence of CD146-positive cells, as a part of the neovasculature scaffolding. These cells, coming from the mesenchymal stem cells population (MSC or EPC-depleted MSC), also expressed other markers of pericyte cells (NG2 and αSMA) that are known to play a pivotal function in the stabilisation of newly formed pre-vascular networks. In parallel, in co-cultures, osteogenic differentiation of MSCs occurred earlier when compared to MSCs monocultures, suggesting the close cooperation between the two cell populations. The presence of angiogenic factors (from autologous platelet lysates) in association with osteogenic factors seems to be crucial for both cell populations' cooperation. These results are promising for future clinical applications, as all components (cells, growth factors) can be prepared in an autologous way.
Resumo:
The aim of this study was to evaluate the ability of dual energy X-rays absorptiometry (DXA) areal bone mineral density (aBMD) measured in different regions of the proximal part of the human femur for predicting the mechanical properties of matched proximal femora tested in two different loading configurations. 36 pairs of fresh frozen femora were DXA scanned and tested until failure in two loading configurations: a fall on the side or a one-legged standing. The ability of the DXA output from four different regions of the proximal femur in predicting the femoral mechanical properties was measured and compared for the two loading scenarios. The femoral neck DXA BMD was best correlated to the femoral ultimate force for both configurations and predicted significantly better femoral failure load (R2=0.80 vs. R2=0.66, P<0.05) when simulating a side than when simulating a standing configuration. Conversely, the work to failure was predicted similarly for both loading configurations (R2=0.54 vs. R2=0.53, P>0.05). Therefore, neck BMD should be considered as one of the key factors for discriminating femoral fracture risk in vivo. Moreover, the better predictive ability of neck BMD for femoral strength if tested in a fall compared to a one-legged stance configuration suggests that DXA's clinical relevance may not be as high for spontaneous femoral fractures than for fractures associated to a fall.
Resumo:
This laboratory developed human T-cell hybridomas which constitutively secrete suppressor factors (SF) capable of inhibiting immune responses (Hybridoma 6:589 (1987). The mechanisms by which human T-cell hybridoma-derived SFs (designated 160 and 169) and Jurkat leukemic T-cell line derived SF inhibit the proliferative response to mitogen by human PBMC were investigated. The Jurkat SF had a pI of 5.2 whereas the 160 and 169 SF had pI of 5.7 and 4.7 (two peaks) and 4.7, respectively. The SF was not transforming growth factor-beta based upon neutralization and iummunoprecipitation experiments with anti-TGF-beta polyclonal antibody. Il-2 production by human PBMC cultured with Con A or OKT3 mAb in the presence of SF was found to be inhibited by greater than 80%. The proliferative responses of SF treated PBMC could not be restored by addition of exogeneous human IL-2. Inhibition of the proliferative responses could not be reversed by addition of exogenous rIL-1, rIL-2 or rIL-4 alone or in paired combinations. The expression of IL-2 receptors (TAC Ag) on Con A activated cultures time points was not affected by treatment with any SFs. Both the 160 and 169 hybridoma-derived SFs were found to arrest PHA induced cell cycle progression in G$\sb0$/G$\sb1$ phase, whereas SF from the Jurkat T-cell line arrested progression in the S phase. Pretreatment of PBMC with SF prior to the addition of mitogen, followed by washing, did not alter the proliferative response of these PBMC nor their cell cycle progression suggesting that cell activation is necessary for these SF to inhibit proliferative responses. Northern blot analysis of total mRNA from mitogen stimulated PBMC in the presence of SF, revealed a time dependent accumulation of an IL-2 specific mRNA of increased size (2.8 kB) in addition to the expected 1.0 kB mature IL-2 message. Interferon-gamma mRNA was of the appropriate size but its half-life was prolonged in SF treated cultures. IL-2 receptor and IL-1 beta mRNA expression was not altered in these cells. ^
Resumo:
BACKGROUND The treatment and outcomes of patients with human immunodeficiency virus (HIV)-associated Hodgkin lymphoma (HL) continue to evolve. The International Prognostic Score (IPS) is used to predict the survival of patients with advanced-stage HL, but it has not been validated in patients with HIV infection. METHODS This was a multi-institutional, retrospective study of 229 patients with HIV-associated, advanced-stage, classical HL who received doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) plus combination antiretroviral therapy. Their clinical characteristics were presented descriptively, and multivariate analyses were performed to identify the factors that were predictive of response and prognostic of progression-free survival (PFS) and overall survival (OS). RESULTS The overall and complete response rates to ABVD in patients with HIV-associated HL were 91% and 83%, respectively. After a median follow-up of 5 years, the 5-year PFS and OS rates were 69% and 78%, respectively. In multivariate analyses, there was a trend toward an IPS score >3 as an adverse factor for PFS (hazard ratio [HR], 1.49; P=.15) and OS (HR, 1.84; P=.06). A cluster of differentiation 4 (CD4)-positive (T-helper) cell count <200 cells/μL was associated independently with both PFS (HR, 2.60; P=.002) and OS (HR, 2.04; P=.04). The CD4-positive cell count was associated with an increased incidence of death from other causes (HR, 2.64; P=.04) but not with death from HL-related causes (HR, 1.55; P=.32). CONCLUSIONS The current results indicate excellent response and survival rates in patients with HIV-associated, advanced-stage, classical HL who receive ABVD and combination antiretroviral therapy as well as the prognostic value of the CD4-positive cell count at the time of lymphoma diagnosis for PFS and OS. Cancer 2014. © 2014 American Cancer Society.
Resumo:
Purpose: Cardiomyocytes are terminally differentiated cells in the adult heart and ischemia and cardiotoxic compounds can lead to cell death and irreversible decline of cardiac function. As testing platforms, isolated organs and primary cells from rodents have been the standard in research and toxicology, but there is a need for better models that more faithfully recapitulate native human biology. Hence, a new in vitro model comprising the advantages of 3D cell culture and the availability of induced pluripotent stem cells (iPSC) from human origin was developed and characterized. Methods: Human cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) were studied in standard 2D culture and as cardiac microtissues (MTs) formed in hanging drops. 2D cultures were examined using immunofluorescence microscopy and Western blotting while the cardiac MTs were subjected to immunofluorescence, contractility, and pharmacological investigations. Results: iPSC-derived CMs in 2D culture showed well-formed myofibrils, cell-cell contacts positive for connexin-43, and other typical cardiac proteins. The cells reacted to pro-hypertrophic growth factors with a substantial increase in myofibrils and sarcomeric proteins. In hanging drop cultures, iPSC-derived cardiomyocytes formed spheroidal MTs within 4 days showing a homogeneous tissue structure with well-developed myofibrils extending throughout the whole spheroid without a necrotic core. MTs showed spontaneous contractions for more than 4 weeks that were recorded by optical motion tracking, sensitive to temperature, and responsive to electrical pacing. Contractile pharmacology was tested with several agents known to modulate cardiac rate and viability. Calcium-transients underlay the contractile activity and were also responsive to electrical stimulation, caffeine-induced Ca2+-release, extracellular calcium levels. Conclusions: 3D culture using iPSC-derived human cardiomyocytes provides an organoid human-based cellular platform that is free of necrosis and recapitulates vital cardiac functionality, thereby providing new and promising relevant model for the evaluation and development of new therapies and detection of cardiotoxicity.
Resumo:
PROBLEM Given the important role of regulatory T cells (Treg) for successful pregnancy, the ability of soluble maternal and fetal pregnancy factors to induce human Treg was investigated. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) or isolated CD4+CD25‒ cells were cultured in the presence of pooled second or third trimester pregnancy sera, steroid hormones or supernatants from placental explants, and the numbers and function of induced CD4+CD25+FOXP3+ Treg were analysed. RESULTS Third trimester pregnancy sera and supernatants of early placental explants, but not sex steroid hormones, induced an increase of Tregs from PBMCs. Early placental supernatant containing high levels of tumour necrosis factor-α, interferon-γ, interleukins -1, -6 and -17, soluble human leucocyte antigen-G, and transforming growth factor-β1, increased the proportion of Treg most effectively and was able to induce interleukin-10-secreting-Treg from CD4+CD25‒cells. CONCLUSIONS Compared with circulating maternal factors, placental- and fetal-derived factors appear to exert a more powerful effect on numerical changes of Treg, thereby supporting fetomaternal tolerance during human pregnancy.
Resumo:
Infection with certain types of HPV is a necessary event in the development of cervical carcinoma; however, not all women who become infected will progress. While much is known about the molecular influence of HPV E6 and E7 proteins on the malignant transformation, little is known about the additional factors needed to drive the process. Currently, conventional cervical screening is insufficient at identifying women who are likely to progress from premalignant lesions to carcinoma. Aneuploidy and chromatin texture from image cytometry have been suggested as quantitative measures of nuclear damage in premalignant lesions and cancer, and traditional epidemiologic studies have identified potential factors to aid in the discrimination of those lesions likely to progress. ^ In the current study, real-time PCR was used to quantitate mRNA expression of the E7 gene in women exhibiting normal epithelium, LSIL, and HSIL. Quantitative cytometry was used to gather information about the DNA index and chromatin features of cells from the same women. Logistic regression modeling was used to establish predictor variables for histologic grade based on the traditional epidemiologic risk factors and molecular markers. ^ Prevalence of mRNA transcripts was lower among women with normal histology (27%) than for women with LSIL (40%) and HSIL (37%) with mean levels ranging from 2.0 to 4.2. The transcriptional activity of HPV 18 was higher than that of HPV 16 and increased with increasing level of dysplasia, reinforcing the more aggressive nature of HPV 18. DNA index and mRNA level increased with increasing histological grade. Chromatin score was not correlated with histology but was higher for HPV 18 samples and those with both HPV 18 and HPV 16. However, chromatin score and DNA index were not correlated with mRNA levels. The most predictive variables in the regression modeling were mRNA level, DNA index, parity, and age, and the ROC curves for LSIL and HSIL indicated excellent discrimination. ^ Real-time PCR of viral transcripts could provide a more efficient method to analyze the oncogenic potential within cells from cervical swabs. Epidemiological modeling of malignant progression in the cervix should include molecular markers, as well as the traditional epidemiological risk factors. ^
Resumo:
Background. There are 200,000 HIV/HCV co-infected people in the US and IDUs are at highest risk of exposure. Between 52-92% of HIV infected IDUs are chronically infected with HCV. African Americans and Hispanics bear the largest burden of co-infections. Furthermore HIV/HCV co-infection is associated with high morbidity and mortality if not treated. The present study investigates the demographic, sexual and drug related risk factors for HIV/HCV co-infection among predominantly African American injecting and non-injecting drug users living in two innercity neighborhoods in Houston, Texas. ^ Methods. This secondary analysis used data collected between February 2004 and June 2005 from 1,889 drug users. Three case-comparison analyses were conducted to investigate the risk factors for HIV/HCV co-infection. HIV mono-infection, HCV mono-infection and non-infection were compared to HIV/HCV co-infection to build multivariate logistic regression models. Race/ethnicity and age were forced into each model regardless of significance in the univariate analysis. ^ Results. The overall prevalence of HIV/HCV co-infection was 3.9% while 39.8% of HIV infected drug users were co-infected with HCV and 10.7% of HCV infected drug users were co-infected with HIV. Among HIV infected IDUs the prevalence of HCV was 71.7% and among HIV infected NIDUs the prevalence of HCV was 24%. In the multivariate analysis, HIV/HCV co-infection was associated with injecting drug use when compared to HIV mono-infection, with MSM when compared to HCV mono-infection and with injecting drug use as well as MSM when compared to non-infection. ^ Conclusion. HIV/HCV co-infection was associated with a combination of sexual and risky injecting practices. More data on the prevalence and risk factors for co-infection among minority populations is urgently needed to support the development of targeted interventions and treatment options. Additionally there should be a focus on promoting safer sex and injecting practices among drug users as well as the expansion of routine testing for HIV and HCV infections in this high risk population.^
Resumo:
The mechanical properties of aortic wall, both healthy and pathological, are needed in order to develop and improve diagnostic and interventional criteria, and for the development of mechanical models to assess arterial integrity. This study focuses on the mechanical behaviour and rupture conditions of the human ascending aorta and its relationship with age and pathologies. Fresh ascending aortic specimens harvested from 23 healthy donors, 12 patients with bicuspid aortic valve (BAV) and 14 with aneurysm were tensile-tested in vitro under physiological conditions. Tensile strength, stretch at failure and elbow stress were measured. The obtained results showed that age causes a major reduction in the mechanical parameters of healthy ascending aortic tissue, and that no significant differences are found between the mechanical strength of aneurysmal or BAV aortic specimens and the corresponding age-matched control group. The physiological level of the stress in the circumferential direction was also computed to assess the physiological operation range of healthy and diseased ascending aortas. The mean physiological wall stress acting on pathologic aortas was found to be far from rupture, with factors of safety (defined as the ratio of tensile strength to the mean wall stress) larger than six. In contrast, the physiological operation of pathologic vessels lays in the stiff part of the response curve, losing part of its function of damping the pressure waves from the heart.