991 resultados para Human chromosomes
Resumo:
The in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) is a method that allows the direct localisation of gene expression. The method utilises the dual buffer mediated activity of the enzyme rTth DNA polymerase enabling both reverse transcription and DNA amplification. Labelled nucleoside triphosphates allow the site of expression to be labelled, rather than the PCR primers themselves, giving a more accurate localisation of transcript expression and decreased background than standard in situ hybridisation (ISH) assays. The MDA-MB-231 human breast carcinoma (HBC) cell line was assayed via the IS-RT-PCR technique, using primers encoding MT-MMP (membrane-type matrix metalloproteinase) and human β-actin. Our results clearly indicate baseline expression of MT-MMP in the relatively invasive MDA-MB-231 cell line at a signal intensity similar to the housekeeping gene β-actin, and results following induction with Concanavalin A (Con A) are consistent with our previous results obtained via Northern blotting.
Resumo:
Migraine is a common complex disorder, currently classified into two main subtypes, migraine with aura (MA) and migraine without aura (MO). The strong preponderance of females to males suggests an X-linked genetic component. Recent studies have identified an X chromosomal susceptibility region (Xq24-q28) in two typical migraine pedigrees. This region harbours a potential candidate gene for the disorder, the serotonin receptor 2C (5-HT2C) gene. This study involved a linkage and association approach to investigate two single nucleotide variants in the 5-HT2C gene. In addition, exonic coding regions of the 5-HT2C gene were also sequenced for mutations in X-linked migraine pedigrees. Results of this study did not detect any linkage or association, and no disease causing mutations were identified. Hence, results for this study do not support a significant role of the 5-HT 2C gene in migraine predisposition. © 2003 Wiley-Liss, Inc.
Resumo:
1. Essential hypertension occurs in people with an underlying genetic predisposition who subject themselves to adverse environmental influences. The number of genes involved is unknown, as is the extent to which each contributes to final blood pressure and the severity of the disease. 2. In the past, studies of potential candidate genes have been performed by association (case-control) analysis of unrelated individuals or linkage (pedigree or sibpair) analysis of families. These studies have resulted in several positive findings but, as one may expect, also an enormous number of negative results. 3. In order to uncover the major genetic loci for essential hypertension, it is proposed that scanning the genome systematically in 100- 200 affected sibships should prove successful. 4. This involves genotyping sets of hypertensive sibships to determine their complement of several hundred microsatellite polymorphisms. Those that are highly informative, by having a high heterozygosity, are most suitable. Also, the markers need to be spaced sufficiently evenly across the genome so as to ensure adequate coverage. 5. Tests are performed to determine increased segregation of alleles of each marker with hypertension. The analytical tools involve specialized statistical programs that can detect such differences. Non- parametric multipoint analysis is an appropriate approach. 6. In this way, loci for essential hypertension are beginning to emerge.
Resumo:
1. There is evidence to suggest that essential hypertension is a polygenic disorder and that it arises from yet-to-be-identified predisposing variants of certain genes that influence blood pressure. The cloning of various hormone, enzyme, adrenoceptor and hormone receptor genes whose products are involved in blood pressure control and the identification of polymorphisms of these has permitted us to test their genetic association with hypertension. 2. Cross-sectional analyses of a number of candidate gene markers were performed in hypertensive and normotensive subjects who were selected on the basis of both parents being either hypertensive or normotensive, respectively, and the difference in total alleles on all chromosomes for each polymorphism between the hypertensive and normotensive groups was test by χ analysis with one degree of freedom. 3. A marked association was observed between hypertension and insertion alleles of polymorphisms of the insulin receptor gene (INSR) (P<0.0040) and the dipeptidyl carboxypeptidase-1 (angiotensin I-converting enzyme; kininase II) gene (DCP1) (P<0.0018). No association with hypertension was evident, however, for polymorphisms of the growth hormone, low-density lipoprotein receptor, renal kallikrein, α2- and β1-adrenoreceptor, atrial natriuretic factor and insulin genes. 4. All but one of the hypertensive subjects had at least one of the hypertension-associated alleles, and although subjects homozygous for both were three times more frequent in the hypertensive group, examination of the nine possible genotypes suggested that the INSR and DCP1 alleles are independent markers for hypertension. 5. The present results suggest that genetic variant(s) in close linkage disequilibrium with polymorphisms at INSR and DCP1 may be involved in part in the aetiology of essential hypertension.
Resumo:
Results of Duffy (Fy) linkage confirm genetic heterogeneity in Charcot-Marie-Tooth disease type 1 (CMT1). Of 11 families informative for Fy, four showed probable linkage with CMT1, seven showed probable non-linkage and two showed definite non-linkage. These results suggest that Fy linked CMT1 may be less common than previously thought. These results combined with those of another DNA probe for the antithrombin III gene confirm that there are at least two gene loci for CMT1, termed 1A and 1B.
Resumo:
Migraine is a frequent familial disorder that, in common with most multifactorial disorders, has an unknown etiology. The authors identified several families with multiple individuals affected by typical migraine using a single set of diagnostic criteria and studied these families for cosegregation between the disorder and markers on chromosome 19, the location of a mutation that causes a rare form of familial hemiplegic migraine (FHM). One large tested family showed both cosegregation and significant allele sharing for markers situated within or adjacent to the FHM locus. Multipoint GENEHUNTER results indicated significant excess allele sharing across a 12.6- cM region containing the FHM Ca2+ channel gene, CACNL1A4 (maximum nonparametric linkage Z score = 6.64, p = 0.0026), with a maximum parametric lod score of 1.92 obtained for a (CAG)(n) triplet repeat polymorphism situated in exon 47 of this gene. The CAG expansion did not, however, appear to be the cause of migraine in this pedigree. Other tested families showed neither cosegregation nor excess allele sharing to chromosome 19 markers. HOMOG analysis indicated heterogeneity, generating a maximum HLOD score of 3.6. It was concluded that Chr19 mutations either in the CACNL1A4 gene or a closely linked gene are implicated in some pedigrees with familial typical migraine, and that the disorder is genetically heterogeneous.
Resumo:
Interest in chromosome 18 in essential hypertension comes from comparative mapping of rat blood pressure quantitative trait loci (QTL), familial orthostatic hypotensive syndrome studies, and essential hypertension pedigree linkage analyses indicating that a locus or loci on human chromosome 18 may play a role in hypertension development. To further investigate involvement of chromosome 18 in human essential hypertension, the present study utilized a linkage scan approach to genotype twelve microsatellite markers spanning human chromosome 18 in 177 Australian Caucasian hypertensive (HT) sibling pairs. Linkage analysis showed significant excess allele sharing of the D18S61 marker when analyzed with SPLINK (P=0.00012), ANALYZE (Sibpair) (P=0.0081), and also with MAPMAKER SIBS (P=0.0001). Similarly, the D18S59 marker also showed evidence for excess allele sharing when analyzed with SPLINK (P=0.016), ANALYZE (Sibpair) (P=0.0095), and with MAPMAKER SIBS (P = 0.014). The adenylate cyclase activating polypeptide 1 gene (ADCYAP1) is involved in vasodilation and has been co-localized to the D18S59 marker. Results testing a microsatellite marker in the 3′ untranslated region of ADCYAP1 in age and gender matched HT and normotensive (NT) individuals showed possible association with hypertension (P = 0.038; Monte Carlo P = 0.02), but not with obesity. The present study shows a chromosome 18 role in essential hypertension and indicates that the genomic region near the ADCYAP1 gene or perhaps the gene itself may be implicated. Further investigation is required to conclusively determine the extent to which ADCYAP1 polymorphisms are involved in essential hypertension. © 2003 Wiley-Liss, Inc.
Resumo:
Insulin has cardiovascular actions and patients with essential hypertension display insulin resistance. A cross-sectional study of the R1 RFLP of the insulin receptor gene (INSR) was carried out in 67 hypertensive (HT) and 75 normotensive (NT) subjects whose parents had a similar blood pressure status at age ≥50. The frequency of the minor (+) allele was 0.31 in HTs and 0.44 in NTs, and the difference between observed alleles in all subjects in each group was significant (χ2 = 4.8, P<0.05). Allele frequencies of a BglI RFLP of the insulin gene, however, did not differ between the HT and NT groups. The data thus provide evidence in favour of an association of HT with a polymorphism at the INSR locus (19p 13.3-13.2), so implicating this locus, and possibly a genetic variant of the insulin receptor itself, in HT.
Resumo:
Essential hypertension is a highly hereditable disorder in which genetic influences predominate over environmental factors. The molecular genetic profiles which predispose to essential hypertension are not known. In rats with genetic hypertension, there is some recent evidence pointing to linkage of renin gene alleles with blood pressure. The genes for renin and antithrombin III belong to a conserved synteny group which, in humans, spans the q21.3-32.3 region of chromosome I and, in rats, is linkage group X on chromosome 13. The present study examined the association of particular human renin gene (REN) and antithrombin III gene (AT3) polymorphisms with essential hypertension by comparing the frequency of specific alleles for each of these genes in 50 hypertensive offspring of hypertensive parents and 91 normotensive offspring of normotensive parents. In addition, linkage relationships were examined in hypertensive pedigrees with multiple affected individuals. Alleles of a REN HindIII restriction fragment length polymorphism (RFLP) were detected using a genomic clone, λHR5, to probe Southern blots of HindIII-cut leucocyte DNA, and those for an AT3 Pstl RFLP were detected by phATIII 113 complementary DNA probe. The frequencies of each REN allele in the hypertensive group were 0.76 and 0.24 compared with 0.74 and 0.26 in the normotensive group. For AT3, hypertensive allele frequencies were 0.49 and 0.51 compared with normotensive values of 0.54 and 0.46. These differences were not significant by χ2 analysis (P > 0.2). Linkage analysis of a family (data from 16 family members, 10 of whom were hypertensive), informative for both markers, without an age-of-onset correction, and assuming dominant inheritance of hypertension, complete penetrance and a disease frequency of 20%, did not indicate linkage of REN with hypertension, but gave a positive, although not significant, logarithm of the odds for linkage score of 0.784 at a recombination fraction of 0 for AT3 linkage to hypertension. In conclusion, the present study could find no evidence for an association of a REN HindIII RFLP with essential hypertension or for a linkage of the locus defined by this RFLP in a family segregating for hypertension. In the case of an AT3 Pstl RFLP, although association analysis was negative, linkage analysis suggested possible involvement (odds of 6:1 in favour) of a gene located near the 1q23 locus with hypertension in one informative family.
Resumo:
The most integrated approach toward understanding the multiple molecular events and mechanisms by which cancer may develop is the application of gene expression profiling using microarray technologies. As molecular alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple samples in a high throughput manner. Since the development of microarray technologies, together with the advances in RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, their limitations, clinical implications including prognostic relevance and gene signature significance along with potential improvements for the next generation of microarray studies.
Resumo:
A fear of imminent information overload predates the World Wide Web by decades. Yet, that fear has never abated. Worse, as the World Wide Web today takes the lion’s share of the information we deal with, both in amount and in time spent gathering it, the situation has only become more precarious. This chapter analyses new issues in information overload that have emerged with the advent of the Web, which emphasizes written communication, defined in this context as the exchange of ideas expressed informally, often casually, as in verbal language. The chapter focuses on three ways to mitigate these issues. First, it helps us, the users, to be more specific in what we ask for. Second, it helps us amend our request when we don't get what we think we asked for. And third, since only we, the human users, can judge whether the information received is what we want, it makes retrieval techniques more effective by basing them on how humans structure information. This chapter reports on extensive experiments we conducted in all three areas. First, to let users be more specific in describing an information need, they were allowed to express themselves in an unrestricted conversational style. This way, they could convey their information need as if they were talking to a fellow human instead of using the two or three words typically supplied to a search engine. Second, users were provided with effective ways to zoom in on the desired information once potentially relevant information became available. Third, a variety of experiments focused on the search engine itself as the mediator between request and delivery of information. All examples that are explained in detail have actually been implemented. The results of our experiments demonstrate how a human-centered approach can reduce information overload in an area that grows in importance with each day that passes. By actually having built these applications, I present an operational, not just aspirational approach.
Resumo:
Purpose To investigate the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness of young adults. Methods A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 15 emmetropic young adults over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, – 2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) in diurnal rhythms were examined. Results Both axial length and choroidal thickness underwent significant diurnal changes on each of the three measurement days (p<0.0001). The introduction of monocular hyperopic defocus resulted in significant changes in the diurnal variations observed in both parameters (p<0.05). A significant (p<0.001) increase in the mean amplitude (peak to trough) of change in axial length (mean increase, 0.016 ± 0.005 mm) and choroidal thickness (mean increase, 0.011 ± 0.003 mm) was observed on day 2 with hyperopic defocus compared to the two ‘no defocus’ days (days 1 and 3). At the second measurement (mean time 12:10 pm) on the day with hyperopic defocus, the eye was significantly longer by 0.012 ± 0.002 mm compared to the other two days (p<0.05). No significant difference was observed in the average timing of the daily peaks in axial length (mean peak time 12:12 pm) and choroidal thickness (21:02 pm) over the three days. Conclusions The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of the diurnal change in axial length and choroidal thickness that returned to normal the following day after removal of the blur stimulus.
Resumo:
Background Transfusion-related acute lung injury (TRALI) is a serious and potentially fatal consequence of transfusion. A two-event TRALI model demonstrated date-of-expiry - day (D) 5 platelet (PLT) and D42 packed red blood cell (PRBC) supernatants (SN) induced TRALI in LPS-treated sheep. We have adapted a whole blood transfusion culture model as an investigative bridge between the ovine TRALI model human responses to transfusion. Methods A whole blood transfusion model was adapted to replicate the ovine model - specifically +/- 0.23μg/mL LPS as the first event and 10% SN volume (transfusion) as the second event. Four pooled SN from blood products, previously used in the TRALI ovine model, were investigated: D1-PLT, D5-PLT, D1-PRBC, and D42-PRBC. Fresh human whole blood (recipient) was mixed with combinations of LPS and BP-SN stimuli and incubated in vitro for 6 hrs. Addition of golgi plug enabled measurement of monocyte cytokine production (IL-6, IL-8, IL-10, IL-12, TNF-α, IL-1α, CXCL-5, IP-10, MIP-1α, MCP-1) using multi-colour flow cytometry. Responses for 6 recipients were assessed. Results In the presence of LPS, D42-PRBC-SN significantly increased monocyte IL-6 (P=0.031), IL-8 (P=0.016) and IL-1α (P=0.008) production compared to D1-PRBC-SN. This response to D42-PRBC-SN was LPS-dependent, and was not evident in non-LPSstimulated controls. This response was also specific to D42-PRBC-SN, as similar changes were not evident for the D5-PLT-SN, compared to the D1-PLT-SN, regardless of the presence of LPS. D5-PLT-SN significantly increased IL-12 production (P=0.024) compared to D1-PLT-SN. This response was again LPS-dependent. Conclusions These data demonstrate a novel two-event mechanism of monocyte inflammatory response that was dependent upon both the presence of date-of-expiry blood product SN and LPS. Further, these results demonstrate different cytokines responses induced by date-of-expiry PLT-SN and PRBC-SN. These data are consistent with the evidence from the ovine TRALI model, and enhancing its relevance to transfusion related changes in humans.
Resumo:
High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation ‘‘hotspot’’ at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma.
Resumo:
This thesis represents a step forward in the development of a pre-clinical model investigating a suitable substitute for host bone for use in human spinal fusion. By way of an animal model, it examines the biological performance of a novel bone graft substitute comprised of a combination of a custom-designed biodegradable material and biologics.