801 resultados para Human T-lymphotropic virus type 2 (HTLV-2)
Resumo:
Genome-wide association studies have identified SNPs reproducibly associated with type 2 diabetes (T2D). We examined the effect of genetic predisposition to T2D on insulin sensitivity and secretion using detailed phenotyping in overweight individuals with no diagnosis of T2D. Furthermore, we investigated whether this genetic predisposition modifies the responses in beta-cell function and insulin sensitivity to a 24-week dietary intervention. We genotyped 25 T2D-associated SNPs in 377 white participants from the RISCK study. Participants underwent an IVGTT prior to and following a dietary intervention that aimed to lower saturated fat intake by replacement with monounsaturated fat or carbohydrate. We composed a genetic predisposition score (T2D-GPS) by summing the T2D risk-increasing alleles of the 25 SNPs and tested for association with insulin secretion and sensitivity at baseline, and with the change in response to the dietary intervention. At baseline, a higher T2D-GPS was associated with lower acute insulin secretion (AIRg 4% lower/risk allele, P = 0.006) and lower insulin secretion for a given level of insulin sensitivity, assessed by the disposition index (DI 5% lower/risk allele, P = 0.002), but not with insulin sensitivity (Si). T2D-GPS did not modify changes in insulin secretion, insulin sensitivity or the disposition index in response to the dietary interventions to lower saturated fat. Participants genetically predisposed to T2D have an impaired ability to compensate for peripheral insulin resistance with insulin secretion at baseline, but this does not modify the response to a reduction in dietary saturated fat through iso-energetic replacement with carbohydrate or monounsaturated fat.
Resumo:
Knowledge of the differences between the amounts and types of protein that are expressed in diseased compared to healthy subjects may give an understanding of the biological pathways that cause disease. This is the reasoning behind the presented protocol, which uses difference gel electrophoresis to discover up‐ or down‐regulated proteins between mice of different genotypes, or of those fed on different diets, that may thus be prone to develop diabetes‐like phenotypes. Subsequent analysis of these proteins by tandem mass spectrometry typically facilitates their identification with a high degree of confidence.
Resumo:
BACKGROUND: this study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. METHODS: a case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant [NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: the genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. CONCLUSIONS: Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.
Resumo:
The prevalence of obesity and diabetes, which are heritable traits that arise from the interactions of multiple genes and lifestyle factors, continues to rise worldwide, causing serious health problems and imposing a substantial economic burden on societies. For the past 15 years, candidate gene and genome-wide linkage studies have been the main genetic epidemiological approaches to identify genetic loci for obesity and diabetes, yet progress has been slow and success limited. The genome-wide association approach, which has become available in recent years, has dramatically changed the pace of gene discoveries. Genome-wide association is a hypothesis-generating approach that aims to identify new loci associated with the disease or trait of interest. So far, three waves of large-scale genome-wide association studies have identified 19 loci for common obesity and 18 for common type 2 diabetes. Although the combined contribution of these loci to the variation in obesity and diabetes risk is small and their predictive value is typically low, these recently identified loci are set to substantially improve our insights into the pathophysiology of obesity and diabetes. This will require integration of genetic epidemiological methods with functional genomics and proteomics. However, the use of these novel insights for genetic screening and personalised treatment lies some way off in the future.
Resumo:
BACKGROUND: The gene encoding for uncoupling protein-1 (UCP1) is considered to be a candidate gene for type 2 diabetes because of its role in thermogenesis and energy expenditure. The objective of the study was to examine whether genetic variations in the UCP1 gene are associated with type 2 diabetes and its related traits in Asian Indians. METHODS: The study subjects, 810 type 2 diabetic subjects and 990 normal glucose tolerant (NGT) subjects, were chosen from the Chennai Urban Rural Epidemiological Study (CURES), an ongoing population-based study in southern India. The polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. RESULTS: The three polymorphisms, namely -3826A-->G, an A-->C transition in the 5'-untranslated region (UTR) and Met229Leu, were not associated with type 2 diabetes. However, the frequency of the A-C-Met (-3826A-->G-5'UTR A-->C-Met229Leu) haplotype was significantly higher among the type 2 diabetic subjects (2.67%) compared with the NGT subjects (1.45%, P < 0.01). The odds ratio for type 2 diabetes for the individuals carrying the haplotype A-C-Met was 1.82 (95% confidence interval, 1.29-2.78, P = 0.009). CONCLUSIONS: The haplotype, A-C-Met, in the UCP1 gene is significantly associated with the increased genetic risk for developing type 2 diabetes in Asian Indians.
Resumo:
Peroxisome proliferator-activated receptor-gamma2 (PPARG2) is a nuclear hormone receptor of ligand-dependent transcription factor involved in adipogenesis and a molecular target of the insulin sensitizers thiazolidinediones. We addressed the question of whether the 3 variants (-1279G/A, Pro12Ala, and His478His) in the PPARG2 gene are associated with type 2 diabetes mellitus and its related traits in a South Indian population. The study subjects (1000 type 2 diabetes mellitus and 1000 normal-glucose-tolerant subjects) were chosen randomly from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The variants were screened by single-stranded conformational variant, direct sequencing, and restriction fragment length polymorphism. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. The -1279G/A, Pro12Ala, and His478His variants of the PPARG2 gene were not associated with type 2 diabetes mellitus. However, the 2-loci analyses showed that, in the presence of Pro/Pro genotype of the Pro12Ala variant, the -1279G/A promoter variant showed increased susceptibility to type 2 diabetes mellitus (odds ratio, 2.092; 95% confidence interval, 1.22-3.59; P = .008), whereas in the presence of 12Ala allele, the -1279G/A showed a protective effect against type 2 diabetes mellitus (odds ratio, 0.270; 95% confidence interval, 0.15-0.49; P < .0001). The 3-loci haplotype analysis showed that the A-Ala-T (-1279G/A-Pro12Ala-His478His) haplotype was associated with a reduced risk of type 2 diabetes mellitus (P < .0001). Although our data indicate that the PPARG2 gene variants, independently, have no association with type 2 diabetes mellitus, the 2-loci genotype analysis involving -1279G/A and Pro12Ala variants and the 3-loci haplotype analysis have shown a significant association with type 2 diabetes mellitus in this South Indian population.
Resumo:
AIMS: Lipoprotein lipase (LPL), a pivotal enzyme in lipoprotein metabolism, catalyzes the hydrolysis of triglycerides of very low-density lipoproteins and chylomicrons. Assuming that the variants in the promoter of the LPL gene may be associated with changes in lipid metabolism leading to obesity and type 2 diabetes, we examined the role of promoter variants (-T93G and -G53C) in the LPL gene in an urban South Indian population. METHODS: The study subjects (619 type 2 diabetic and 731 normal glucose-tolerant (NGT) subjects) were chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP). Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. RESULTS: The two polymorphisms studied were not in LD. The -T93G was not associated with type 2 diabetes but was associated with obesity. 11.5% of the obese subjects (62/541) had the XG(TG+GG) genotype compared with 6.4% of the nonobese subjects (52/809; P=0.001). The odds ratio for obesity for the XG genotype was 1.766 (95% CI: 1.19-2.63, P=0.005). Subjects with XG genotype also had higher body mass index and waist circumference compared with those with TT genotype. With respect to G53C, subjects with the XC(GC+CC) genotype had 0.527 and 0.531 times lower risk for developing type 2 diabetes and obesity, respectively. CONCLUSIONS: Among Asian Indians, the -T93G SNP of the LPL gene is associated with obesity but not type 2 diabetes, whereas the -G53C SNP appears to be protective against both obesity and type 2 diabetes.
Resumo:
AIMS: The objective of the present investigation was to examine the relationship of three polymorphisms, Thr394Thr, Gly482Ser and +A2962G, of the peroxisome proliferator activated receptor-gamma co-activator-1 alpha (PGC-1alpha) gene with Type 2 diabetes in Asian Indians. METHODS: The study group comprised 515 Type 2 diabetic and 882 normal glucose tolerant subjects chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The three polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Haplotype frequencies were estimated using an expectation-maximization (EM) algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: The three polymorphisms studied were not in linkage disequilibrium. With respect to the Thr394Thr polymorphism, 20% of the Type 2 diabetic patients (103/515) had the GA genotype compared with 12% of the normal glucose tolerance (NGT) subjects (108/882) (P = 0.0004). The frequency of the A allele was also higher in Type 2 diabetic subjects (0.11) compared with NGT subjects (0.07) (P = 0.002). Regression analysis revealed the odds ratio for Type 2 diabetes for the susceptible genotype (XA) to be 1.683 (95% confidence intervals: 1.264-2.241, P = 0.0004). Age adjusted glycated haemoglobin (P = 0.003), serum cholesterol (P = 0.001) and low-density lipoprotein (LDL) cholesterol (P = 0.001) levels and systolic blood pressure (P = 0.001) were higher in the NGT subjects with the XA genotype compared with GG genotype. There were no differences in genotype or allelic distribution between the Type 2 diabetic and NGT subjects with respect to the Gly482Ser and +A2962G polymorphisms. CONCLUSIONS: The A allele of Thr394Thr (G --> A) polymorphism of the PGC-1 gene is associated with Type 2 diabetes in Asian Indian subjects and the XA genotype confers 1.6 times higher risk for Type 2 diabetes compared with the GG genotype in this population.
Resumo:
Isolated source monitoring recollection deficits indicate that abnormalities in glucose metabolism are not detrimental for global episodic memory processes. This enhances our understanding of how metabolic disorders are associated with memory impairments.
Resumo:
Abnormalities in glucose tolerance such as type 2 diabetes can have demonstrable negative effects on a range of cognitive functions. However, there was no evidence that low GL breakfasts administered acutely could confer benefits for cognitive function (ClincalTrials.gov identifier, NCT01047813).
Resumo:
Background: Stable-isotope ratios of carbon (13C/12C, expressed as δ13C) and nitrogen (15N/14N, or δ15N) have been proposed as potential nutritional biomarkers to distinguish between meat, fish, and plant-based foods. Objective: The objective was to investigate dietary correlates of δ13C and δ15N and examine the association of these biomarkers with incident type 2 diabetes in a prospective study. Design: Serum δ13C and δ15N (‰) were measured by using isotope ratio mass spectrometry in a case-cohort study (n = 476 diabetes cases; n = 718 subcohort) nested within the European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk population-based cohort. We examined dietary (food-frequency questionnaire) correlates of δ13C and δ15N in the subcohort. HRs and 95% CIs were estimated by using Prentice-weighted Cox regression. Results: Mean (±SD) δ13C and δ15N were −22.8 ± 0.4‰ and 10.2 ± 0.4‰, respectively, and δ13C (r = 0.22) and δ15N (r = 0.20) were positively correlated (P < 0.001) with fish protein intake. Animal protein was not correlated with δ13C but was significantly correlated with δ15N (dairy protein: r = 0.11; meat protein: r = 0.09; terrestrial animal protein: r = 0.12, P ≤ 0.013). δ13C was inversely associated with diabetes in adjusted analyses (HR per tertile: 0.74; 95% CI: 0.65, 0.83; P-trend < 0.001], whereas δ15N was positively associated (HR: 1.23; 95% CI: 1.09, 1.38; P-trend = 0.001). Conclusions: The isotope ratios δ13C and δ15N may both serve as potential biomarkers of fish protein intake, whereas only δ15N may reflect broader animal-source protein intake in a European population. The inverse association of δ13C but a positive association of δ15N with incident diabetes should be interpreted in the light of knowledge of dietary intake and may assist in identifying dietary components that are associated with health risks and benefits.
Resumo:
Antioxidants probably play an important role in the etiology of type 2 diabetes (DM2). This study evaluated the effects of supplementation with lipoic acid (LA) and alpha-tocopherol on the lipid profile and insulin sensitivity of DM2 patients. A randomized, double-blind, placebo-controlled trial involving 102 DM2 patients divided into four groups to receive daily supplementation for 4 months with: 600 mg LA (n = 26); 800 mg alpha-tocopherol (n = 25); 800 mg alpha-tocopherol + 600 mg LA (n = 25); placebo (n = 26). Plasma alpha-tocopherol, lipid profile, glucose, insulin, and the HOMA index were determined before and after supplementation. Differences within and between groups were compared by ANOVA using Bonferroni correction. Student`s t-test was used to compare means of two independent variables. The vitamin E/total cholesterol ratio improved significantly in patients supplemented with vitamin E + LA and vitamin E alone (p <= 0.001). There were improvements of the lipid fractions in the groups receiving LA and vitamin E alone or in combination, and on the HOMA index in the LA group, but not significant. The results suggest that LA and vitamin E supplementation alone or in combination did not affect the lipid profile or insulin sensitivity of DM2 patients. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aim: The objective of this study is to assess the contribution of ADIPOQ variants to type 2 diabetes in Japanese Brazilians. Methods: We genotyped 200 patients with diabetes mellitus (100 male and 100 female, aged 55.0 years [47.5-64.0 years]) and 200 control subjects with normal glucose tolerant (NGT) (72 male and 128 female, aged 52.0 years [43.5-64.5 years]). Results: Whereas each polymorphism studied (T45G, G276T, and A349G) was not significantly associated with type 2 diabetes mellitus, the haplotype GGA was overrepresented in our diabetic population (9.3% against 3.1% in NGT individuals, P=.0003). Also, this haplotype was associated with decreased levels of adiponectin. We also identified three mutations in exon 3: I164T, R221S, and H241P, but, owing to the low frequencies of them, associations with type 2 diabetes could not be evaluated. The subjects carrying the R221S mutation had plasma adiponectin levels lower than those without the mutation (2.10 mu g/ml [1.35-2.55 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml], P=.015). Similarly, the I164T mutation carriers had mean plasma adiponectin levels lower than those noncarriers (3.73 mu g/ml [3.10-4.35 mu g/ml] vs. 6.68 mu g/ml [3.90-11.23 mu g/ml]), but this difference was not significant (P=.17). Conclusions: We identified in the ADIPOQ gene a risk haplotype for type 2 diabetes in the Japanese Brazilian population. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background: Microalbuminuria in Type 2 diabetes is associated with arterial endothelial dysfunction, but the venous bed was never evaluated. Aim: To study the endothelial function in the venous and arterial bed in patients with Type 2 diabetes with normoalbuminuria or microalbuminuria. Material and methods: We evaluated 28 patients with Type 2 diabetes, glycated hemoglobin (Hbak(1c)) <7.5%, who were classified as normo- (albuminuria <30 mg/24 h; no.=16) or microalbuminuric (albuminuria 30-300 mg/24 h; no.=12). Venous and arterial endothelial function were assessed by the dorsal hand vein technique (venodilation by acetylcholine) and brachial artery flow-mediated vasodilation, respectively. Results: Patients were normotensive (systolic arterial pressure: 131.1 +/- 10.6 mmHg) and on good metabolic control (HbA(1c): 6.6 +/- 0.6%). Microalbuminuric patients presented impaired venous (32.9 +/- 17.4 vs 59.3 +/- 26.5%; p=0.004) and arterial vasodilation (1.8 +/- 0.9 vs 5.1 +/- 2.4; p<0.001), as compared to normoalbuminuric patients. There was a negative correlation between acetylcholine-induced venodilation and albuminuria (r=-0.62; p<0.001) and HbA(1c) (r=-0.41; p=0.032). The same was observed between flow-mediated arterial vasodilation and albuminuria (r=-0.49; p=0.007) and HbA(1c) (r=-0.44; p=0.019). Venous and arterial vasodilation was positively correlated (r=0.50; p=0.007). Conclusions: Both venous and arterial endothelial function are impaired in Type 2 microalbuminuric diabetics, in spite of good metabolic control, suggesting that other factors are involved in its pathogenesis. (J. Endocrinol. Invest. 33: 696-700, 2010) (C) 2010, Editrice Kurtis