921 resultados para Hot-water heating.
Resumo:
We study the effects of pulse heating parameters on the micro bubble behavior of a platinum microheater (100 mu m x 20 mu m) immersed in a methanol pool. The experiment covers the heat fluxes of 10-37 MW/m(2) and pulse frequencies of 25-500 Hz. The boiling incipience is initiated at the superheat limit of methanol, corresponding to the homogeneous nucleation. Three types of micro boiling patterns are identified. The first type is named as the bubble explosion and regrowth, consisting of a violent explosive boiling and shrinking, followed by a slower bubble regrowth and subsequent shrinking, occurring at lower heat fluxes. The second type, named as the bubble breakup and attraction, consists of the violent explosive boiling, bubble breakup and emission, bubble attraction and coalescence process, occurring at higher heat fluxes than those of the first type. The third type, named as the bubble size oscillation and large bubble formation, involves the initial explosive boiling, followed by a short periodic bubble growth and shrinking. Then the bubble continues to increase its size, until a constant bubble size is reached which is larger than the microheater length.
Resumo:
To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, Tspe, is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.中文摘要:ECR(电子回旋共振)离子源是产生稳定的强流多电荷态离子束流最有效装置。全永磁 ECR 离子源因其独特的特点为很多中小型多电荷态离子束流实验平台与离子注入机等系统所采用,为后者产生重复性好、稳定性强的多电荷态离子束流。本文着重论述了中国科学院近代物理研究所研制的几台全永磁多电荷态ECR离子源及其特性与典型性能,如能产生强流高电荷态离子束流的高性能全永磁离子源LAPECR2,能产生强流中低电荷态离子束流的LAPECR1,能产生多电荷态重金属离子束流的LAPECR1-M等。这些性能稳定的离子源为提高近代物理研究所相关试验平台的性能提供了关键的束流品质保障。
Resumo:
Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 mu m/d) and 20 m (236.9 mu m/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 mu m/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.
Resumo:
Hot-dipped galvanized zinc and zinc alloy coatings were used as the hot-dipped low alloy zinc coatings (aluminum content less than protective metallic coatings for steel structures in seawater in Chi- or equal to 10 wt%) is equal to or even lower than that of the pure na. Corrosion of the two coatings immersed in sea water in Qingdao zinc sheet, while the performance of the hot-dipped high alloy zinc and Xiamen for 6 years were introduced and analyzed, which pro-coatings is higher than that of the pure zinc sheet. The hot-dipped vides a basis for further development and applications of these coat- high alloy zinc coatings can be further developed for optimal tings in China. Tests proved that the anti-corrosion performance of formance in the future.
Resumo:
Abstract In order to provide basic data for evaluation of the petroleum potential in the deep water area of the northern margin of the South China Sea (SCS), present-day thermal regime and basin tectonothermal evolution are reconstructed and the maturation history of the Cenozoic major source rocks in the study area is derived. The present-day geothermal regime in the deep water area of the northern margin of SCS is defined according to the geothermal gradient, thermal properties and heat flow data. Tectonic subsidence history is reconstructed based on borehole and seismic data, and accordingly the stretching episodes are determined from the subsidence pattern. Heat flow history in the deep water area of the northern margin of SCS is estimated on a finite time, laterally non-uniform and multi-episode stretching model. Maturation history of the main source rocks in the study area is estimated through EASYRo% kinetic model and thermal history, and the potential of petroleum in the deep water area of the northern margin of SCS is evaluated based on the data above. The results show that the present-day geothermal regime in the deep water area of the northern margin of SCS is characterized by “hot basin” with high geothermal gradient (39.1±7.4℃/km) and high heat flow (77.5±14.8 mW/m2), and that the Qiongdongnan Basin (QDNB) underwent three stretching episodes and consequently suffered three heating episodes (Eocene, Oligocene and Pliocene time) with highest paleo-heat flow of 65~90 mW/m2 at the end of the Pliocene, that the Pearl River Mouth Basin (PRMB) two stretching and two heating episodes (Eocene, Oligocene time) with highest paleo-heat flow of 60~70 mW/m2 at the end of the Oligocene, and that the source rocks matured drastically responding to the heating episodes. There are four hydrocarbon generation kitchens in the deep water area of the northern margin of SCS which are favor of its bright petroleum perspective. Tectonothermal analysis indicates that the present-day geothermal regime which is characterized with “hot basin” in the deep water area of the PRMB resulted mainly from the Cenozoic stretching as well as faulting and magmatic activities during the Neotectonic period, and that the Pliocene heating episode of the QDNB is coupled with the transition from sinistral to dextral gliding of the Red Rive fault, and that the deep water basins in the northern margin of SCS are typical of multiple rifting which caused multi-episode heating process.
Resumo:
Li, Xing, 'Transition region, coronal heating and the fast solar wind', Astronomy and Astrophysics (2003) 406 pp.345-356 RAE2008
Resumo:
Here we show that the configuration of a slender enclosure can be optimized such that the radiation heating of a stream of solid is performed with minimal fuel consumption at the global level. The solid moves longitudinally at constant rate through the enclosure. The enclosure is heated by gas burners distributed arbitrarily, in a manner that is to be determined. The total contact area for heat transfer between the hot enclosure and the cold solid is fixed. We find that minimal global fuel consumption is achieved when the longitudinal distribution of heaters is nonuniform, with more heaters near the exit than the entrance. The reduction in fuel consumption relative to when the heaters are distributed uniformly is of order 10%. Tapering the plan view (the floor) of the heating area yields an additional reduction in overall fuel consumption. The best shape is when the floor area is a slender triangle on which the cold solid enters by crossing the base. These architectural features recommend the proposal to organize the flow of the solid as a dendritic design, which enters as several branches, and exits as a single hot stream of prescribed temperature. The thermodynamics of heating is presented in modern terms in the Sec. (exergy destruction, entropy generation). The contribution is that to optimize "thermodynamically" is the same as reducing the consumption of fuel. © 2010 American Institute of Physics.
Resumo:
We have made self-consistent models of the density and temperature profiles of the gas and dust surrounding embedded luminous objects using a detailed radiative transfer model together with observations of the spectral energy distribution of hot molecular cores. Using these profiles we have investigated the hot core chemistry which results when grain mantles are evaporated, taking into account the different binding energies of the mantle molecules, as well a model in which we assume that all molecules are embedded in water ice and have a common binding energy. We find that most of the resulting column densities are consistent with those observed toward the hot core G34.3+0.15 at a time around 10^4 years after central luminous star formation. We have also investigated the dependence of the chemical structure on the density profile which suggests an observational possibility of constraining density profiles from determination of the source sizes of line emission from desorbed molecules.
Resumo:
Fire has long been recognized as an agent of rock weathering. Our understanding of the impact of fire on stone comes either from early anecdotal evidence, or from more recent laboratory simulation studies, using furnaces to simulate the effects of fire. This paper suggests that knowledge derived from simulated heating experiments is based on the preconceptions of the experiment designer – when using a furnace to simulate fire, the operator decides on the maximum temperature and the duration of the experiment. These are key factors in determining the response of the stone to fire, and if these are removed from realworld observations then knowledge based on these simulations must be questioned. To explore the differences between heating sandstone in a furnace and a real fire, sample blocks of Peakmoor Sandstone were subjected to different stress histories in combination (lime rendering and removal, furnace heating or fire, frost and salt weathering). Block response to furnace heating and fire is discussed, with emphasis placed on the non-uniformity of the fire and of block response to fire in contrast to the uniform response to surface heating in a furnace. Subsequent response to salt weathering (by a 10% solution of sodium chloride and magnesium sulphate) was then monitored by weight loss. Blocks that had experienced fire showed a more unpredictable response to salt weathering than those that had undergone furnace heating – spalling of corners and rapid catastrophic weight loss were evidenced in blocks that had been subjected to fire, after periods of relative quiescence. An important physical side-effect of the fire was soot accumulation, which created a waxy, relatively impermeable layer on some blocks. This layer repelled water and hindered salt ingress, but eventually detached when salt, able to enter the substrate through more permeable areas, concentrated and crystallized behind it, resulting in rapid weight loss and accelerated decay. Copyright ©2007 John Wiley & Sons, Ltd.
Resumo:
A detailed theoretical analysis has been carried out to study efficient heating due to microwaves for one-dimensional (1D) oil–water emulsion samples placed on various ceramic, metallic (reflective) and ceramic–metallic composite supports. Two typical emulsion systems are considered such as oil-in-water (o/w) and water-in-oil (w/o). A preliminary study has been carried out via average power vs emulsion thickness diagram to estimate microwave power absorption within emulsion samples for various cases. The maxima in average power, also termed as ‘resonances’, are observed for specific emulsion thicknesses and the two consecutive resonances of significant magnitudes are termed as R1 and R2 modes. For both o/w and w/o emulsions, it is observed that microwave power absorption is enhanced in presence of metallic and composite supports during both R1 and R2 modes. The efficient heating strategies characterized by ‘large heating rates’ with ‘minimal thermal runaway’ i.e. uniform temperature distributions within the sample have been assessed for each type of emulsion. Based on the detailed spatial distributions of power and temperature for various cases, SiC-metallic composite support may be recommended as an optimal heating strategy for o/w samples with higher oil fractions (0.45) whereas metallic and Alumina-metallic composite supports may be favored for samples with smaller oil fractions (=0.3) during R1 mode. For w/o samples, SiC-metallic composite support may be suitable heating strategy for all ranges of water fractions during R1 mode. During R2 mode, metallic and Alumina-metallic composite supports are favored for both o/w and w/o emulsion samples. Current study recommends the efficient way to use microwaves in a single mode waveguide and the heating strategy can be suitably extended for heating of any other emulsions for which dielectric properties are easily measurable or available in the literature.
Resumo:
C17 polyacetylenes are a group of bioactive compounds present in carrots which have recently gained scientific attention due to their cytotoxicity against cancer cells. In common with many bioactive compounds, their levels may be influenced by thermal processes, such as boiling or water immersion. This study investigated the effect of a number of water immersion time/temperature combinations on concentrations of these compounds and attempted to model the changes. Carrot samples were thermally treated by heating in water at temperatures from 50–100 °C and holding times of 2–60 min. Following heating, levels of falcarinol (FaOH), falcarindiol (FaDOH), falcarindiol-3-acetate (FaDOAc) and Hunter colour parameters (L*, a*, b*) were determined. FaOH, FaDOH, FaDOAc levels were significantly reduced at lower temperatures (50–60 °C). In contrast, samples heated at temperatures from 70–100 °C exhibited higher levels of polyacetylenes (p < 0.05) than did raw unprocessed samples. Regression modelling was used to model the effects of temperature and holding time on the levels of the variables measured. Temperature treatment and holding time were found to significantly affect the polyacetylene content of carrot disks. Predicted models were found to be significant (p < 0.05) with high coefficients of determination (R2).
Resumo:
Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the evaporation of material from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species, such as water, methane and methanol. In this paper, we report the detection of 14 rotational transitions of ethanol in the submillimetre spectrum of the molecular cloud associated with the ultra-compact H II region G34.3+0.15. We derive a rotation temperature of 125 K and a beam-averaged column density of 2.0x10(15) cm(-2), corresponding to a fractional abundance on the order of 4x10(-9). This large abundance, which is a lower limit due to the likelihood of beam dilution, cannot be made by purely gas-phase processes, and we conclude that the ethanol must be formed efficiently in the grain surface chemistry. Since it has been argued previously that methanol is formed via surface chemistry, it appears that alcohol formation may be a natural by-product of surface reactions.
Resumo:
Three isolates each, of nine different Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe, and the impact of temperature (20-60 degrees C), osmotic and matric potential (-0.5 to - 8.0 MPa), and their interactions on in vitro growth compared. Generally, there was no significant difference between growth of isolates of the same species in relation to temperature. Temperature relationships of the species studied correlated well with their geographic distributions. Species occurring in hot, dry regions tolerated a wide temperature range, with some showing unusually high thermotolerance (55 degrees, T. socotrana, T. cingulata and T. cervina). There were significant intra-strain differences for individual species in relation to solute potential on glycerol-modified media. Generally, growth of ail species was better on glycerol- and KCl-modified osmotic media than on a metrically-modified medium (PEG 8000) at 25, 30 and 37 degrees. The limits for growth on the osmotic media were significantly wider than matric medium, being - 4.5 to - 5.0 and - 2.5 to - 4.5 MPa, respectively. An Irpex sp. grew at lower water potentials than all other species, with good growth at - 7.0 MPa. This study suggests that the capacity of these fungi for effective growth over a range of temperatures, osmotic and matric potentials contributes to their rapid wood decay capacities in tropical climates.
Resumo:
AC magnetic heating of superparamagnetic Co and Fe nanoparticles for application in hyperthermia was measured to find a size of nanoparticles that would result in an optimal heating for given amplitude and frequency of ac externally applied magnetic field. To measure it, a custom-made power supply connected to a 20-turn insulated copper coil in the shape of a spiral solenoid cooled with water was used. A fiber-optic temperature sensor has been used to measure the temperature with an accuracy of 0.0001 K. The magnetic field with magnitude of 20.6 µT and a frequency of oscillation equal to 348 kHz was generated inside the coil to heat magnetic nanoparticles. The maximum specific power loss or the highest heating rate for Co magnetic nanoparticles was achieved for nanoparticles of 8.2 nm in diameter. The maximum heating rate for coated Fe was found for nanoparticles with diameter of 18.61 nm. © (2013) Trans Tech Publications, Switzerland.
Resumo:
We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the "warm" contributions to the emission. HMI/SDO data allow us to focus on "inter-moss" regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min–1 and 0.7 min–1. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D "hybrid" shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops