948 resultados para Host-parasite interaction
New host records and description of the egg of Anacanthorus penilabiatus (Monogenea, Dactylogyridae)
Resumo:
Anacanthorus penilabiatus is referred parasitizing the type-host Piaractus mesopotamicus (Serrasalmidae) and two new hosts, Colossoma macropomum and C. brachypomum (Characidae) from fish ponds of "Departamento Nacional de Obras Contra as Secas", Pentecoste, State of Ceará, Brazil. Table of measurements and the first description of the egg are presented.
Resumo:
"Mal de Cadeiras", an enzootic disease caused by Trypanosoma evansi, is one of the most important trypanosomiases in the Brazilian Pantanal region. The disease affects mainly horses, which are widely used in extensive cattle production, an activity of greatest economical significance for the region. The parasite also infects sylvan (coatis and capybaras) and domestic (dogs) animals, respectively considered wild and domestic reservoirs of T. evansi. For a better understanding of the interaction of T. evansi with its rodent host, we evaluated the differences in the specific antibody level patterns and in the parasitic peptides recognition patterns of experimentally infected Wistar rats. The rats experimentally infected with T. evansi isolates obtained from coatis, dogs and horses were submitted to indirect immunofluorescence test (IgM e IgG) and Western blotting. The serological titers for IgM and IgG ranged between 1:40 and 1:160. The most recognized polypeptide profiles were in a range of 17 and 74 kDa. Our data suggest that the humoral immune response in Wistar rats is not sufficient for granting an effective control of T. evansi infections.
Resumo:
The water rat, Nectomys squamipes, closely involved in schistosomiasis transmission in Brazil, has been found naturally infected simultaneously by Schistosoma mansoni and Echinostoma paraensei. Laboratory experiments were conducted to verify parasitic interaction in concurrent infection. It was replicated four times with a total of 42 water rats and essayed two times with 90 mice pre-infected with E. paraensei. Rodents were divided into three groups in each replication. A wild strain recently isolated from Sumidouro, RJ, and a laboratory strain of S. mansoni from Belo Horizonte (BH) was used. Rats infected with E. paraensei were challenged 4 weeks later with S. mansoni and mice 2 or 6 weeks after the infection with S. mansoni. Necropsy took place 8 weeks following S. mansoni infection. The N. squamipes treatment groups challenged with S. mansoni RJ strain showed a significant decrease (80 and 65%) in the S. mansoni parasite load when compared with their respective control groups. There was a significant change or no change in the hosts challenged with the BH strain. The persistence time of E. paraensei within host was extended in relation to control groups, with a consequent enhancement of the number of recovered worm. An E. paraensei strain-specific influence on S. mansoni parasitism is reported. This paper presents some experimental data about this interaction in N. squamipes and Mus musculus.
Resumo:
Amblyomma varium, commonly known in Brazil as the "carrapato-gigante-da-preguiça" (sloth's giant tick) is found from southern Central America to Argentina. The present study adds information on the geographical distribution of A. varium, as well as on their hosts, based on material deposited in the main Brazilian collections and on the available literature. Eighty-two vials, containing 191 adult specimens, deposited in five Acari collections between 1930 and 2001, were examined. These vials included data on the host and collection localities. The biology of A. varium is unknown. However it is known that, during the adult stage, the tick presents a high host specificity and is found almost exclusively on the sloths Bradypus tridactylus, B. variegatus, B.torquatus (Bradypodidae), Choloepus hoffmanni and C. didactylus (Megalonychidae). Based on the material examined, the states of Rondônia, Amazonas, Bahia and Alagoas are newly assigned to geographic distribution of A. varium in Brazil.
Resumo:
Due to the semi aquatic habits and the overlap of the geographical distribution of the water-rat, Nectomys spp., with schistosomiasis endemic areas, these wild rodents are very likely to acquire Schistosoma mansoni infection in their daily activities. The role of the water-rat in the S. mansoni cycle would be substantiated if one could prove that these rodents acquire the parasite during their own activity time, a completely independent time schedule of human activities. To pursue this goal, we performed two field experiments in the municipality of Sumidouro, State of Rio de Janeiro, Brazil, a schistosomiasis endemic area where N. squamipes is found naturally infected. One experiment was devised as a series of observations of activity time of the water-rat. The other experiment was a test of the occurrence of late transmission of S. mansoni to the water-rat. The daily activity pattern showed that the water-rat is active chiefly just after sunset. At both diurnal and late exposition essays the water-rat sentinels got infected by S. mansoni. These findings clarify ecological and behavioral components necessary to the adaptation of S. mansoni to the water-rat as a non human definitive host and the existence of a transmission cycle involving this animals as a reservoir.
Resumo:
Patterns of parasite abundance and prevalence are thought to be influenced by several host characteristics such as size, sex, developmental stage, and seasonality. We examined two obligatory ectoparasites of the bat Noctilio leporinus (L.) (Chiroptera, Noctilionidae) to test whether prevalence and abundance of Noctiliostrebla aitkeni Wenzel and Paradyschiria fusca Speiser (Diptera, Streblidae) are influenced by the host characteristics. During this survey, 2110 flies were collected. The total abundance was 1150 N. aitkeni and 950 P. fusca. The prevalence of both species was shown to be superior to 75% and neither host size, sex, reproductive stage nor season influenced significantly the variation of the observed values. N. aitkeni were more abundant than P. fusca in all seasons except winter. Both flies showed a significant seasonal variation in terms of abundance but host biological characteristics (host size, sex, and reproductive stage) did not play a significant role as structuring factors of the batflies component community.
Resumo:
The first steps in leishmaniasis are critical in determining the evolution of the disease. Major advances have recently been done in understanding this crucial moment. Fundamental research in parasite-vector interaction, parasite biology, insect saliva, and vertebrate host response have shed new light and uncovered a most fascinating and complex moment in leishmaniasis. We review here some of these aspects and we try to connect them in a logical framework.
Resumo:
The nematode parasite Ascaris lumbricoides infects the digestive tracts of over 1.4 billion people worldwide, and its sister species, Ascaris suum, has infected a countless number of domesticated and feral pigs. It is generally thought that the putative ancestor to these worms infected either humans or pigs, but with the advent of domestication, they had ample opportunity to jump to a new host and subsequently specialize and evolve into a new species. While nuclear DNA markers decisively separate the two populations, mitochondrial sequences reveal that three major haplotypes are found in A. suum and in A. lumbricoides, indicating either occasional hybridization, causing introgression of gene trees, or retention of polymorphism dating back to the original ancestral species. This article provides an illustration of the combined contribution of parasitology, archaeoparasitology, genetics and paleogenetics to the history of ascariasis. We specifically investigate the molecular history of ascariasis in humans by sequencing DNA from the eggs of Ascaris found among ancient archeological remains. The findings of this paleogenetic survey will explain whether the three mitochondrial haplotypes result from recent hybridization and introgression, due to intensive human-pig interaction, or whether their co-occurrence predates pig husbandry, perhaps dating back to the common ancestor. We hope to show how human-pig interaction has shaped the recent evolutionary history of this disease, perhaps revealing the identity of the ancestral host.
Resumo:
The ability of Trypanosoma cruzi to interact with plasminogen, the zimogenic form of the blood serin protease plasmin, was examined. Immunohistochemistry studies revealed that both forms, epimastigotes and metacyclic trypomastigotes, were able to fix plasminogen in a lysine dependant manner. This interaction was corroborated by plasminogen activation studies. Both forms of the parasite enhanced the plasminogen activation by tissue-type plasminogen activator.The maximal enhancements obtained were 15-fold and 3.4-fold with epimastigotes and metacyclic trypomastigotes, respectively, as compared to plasminogen activation in absence of cells. Ligand-blotting analysis of proteins extracted with Triton X-114 from a microsomal fraction of epimastigotes revealed at least five soluble proteins and one hydrophobic protein able to bind plasminogen.
Resumo:
We investigated the in vitro action of an hydrosoluble 2-nitroimidazole, Etanidazole (EZL), against Trypanosoma cruzi, the etiologic agent of Chagas disease. EZL displayed lethal activity against isolated trypomastigotes as well as amastigotes of T. cruzi (RA strain) growing in Vero cells or J774 macrophages, without affecting host cell viability. Although not completely equivalent to Benznidazole (BZL), the reference drug for Chagas chemotherapy, EZL takes advantage in exertingits anti-T. cruzi activity for longer periods without serious toxic side effects, as those recorded in BZL-treated patients. Our present results encourage further experiments to study in depth the trypanocidal properties of this drug already licensed for use in human cancers.
Resumo:
Biomphalaria tenagophila is very important for schistosomiasis transmission in Brazil. However its mechanisms of interaction with Schistosoma mansoni are still scantly studied. Since this snail displays strains highly susceptible or completely resistant to the parasite infection, the knowledge of that would be a useful tool to understand the mechanism of snail resistance. Particularly, the Taim strain consistently shows absolute resistance against the trematode, and this resistance is a dominant character. A multidisciplinary research group was created aiming at studying B. tenagophila/S. mansoni interaction. The possibility for applying the knowledge acquired to obtain a biological model for the control of S. mansoni transmission in endemic areas is discussed.
Resumo:
A new myxosporean species is described from the fish Semaprochilodus insignis captured from the Amazon River, near Manaus. Myxobolus insignis sp. n. was located in the gills of the host forming plasmodia inside the secondary gill lamellae. The spores had a thick wall (1.5-2 µm) all around their body, and the valves were symmetrical and smooth. The spores were a little longer than wide, with rounded extremities, in frontal view, and oval in lateral view. They were 14.5 (14-15) µm long by 11.3 (11-12) µm wide and 7.8 (7-8) µm thick. Some spores showed the presence of a triangular thickening of the internal face of the wall near the posterior end of the polar capsules. This thickening could occur in one of the sides of the spore or in both sides. The polar capsules were large and equal in size surpassing the midlength of the spore. They were oval with the posterior extremity rounded, and converging anteriorly with tapered ends. They were 7.6 (7-8) µm long by 4.2 (3-5) µm wide, and the polar filament formed 6 coils slightly obliquely to the axis of the polar capsule. An intercapsular appendix was present. There was no mucous envelope or distinct iodinophilous vacuole.
Resumo:
The avian eye trematode Philophthalmus lachrymosus Braun, 1902 is for the first time referred naturally occurring in a non-human mammalian host. Previously, natural infections with P. lachrymosus and other species of Philophthalmus have been occasionally reported from man, with few data on experimental infections of non-human mammals. Results presented here are related to the report of two cases of philophthalmosis due to natural infections of wild Brazilian capybaras, Hydrochaeris hydrochaeris L., 1766 with P. lachrymosus and associated pathology. Clinical signs, gross and microscopic lesions as well as new morphometric data on the parasite are presented.
Resumo:
Lymphatic filariasis caused by nematode parasites Wuchereria bancrofti or Brugia malayi is a spectral disease and produces wide range of immune responses and varying levels ofmicrofilaraemia in infected individuals. The relationship between the immune response of host and the developmental stage of the parasite as well as the microfilariae (mf) density and specific location of the adult worms is yet to be understood. As an experimental model, B. malayi adapted in the experimental animal Mastomys coucha has been used widely for various studies in filariasis. The present study was to assess microfilaraemia as well as the humoral immune response of M. coucha during various stages of B. malayi development and their localization in different organs. The result showed that the density of mf in the circulating blood of the experimental animal depended upon the number of female worms as well as the location and co-existence of male and female worms. The mf density in the blood increased with the increase in the number of females. The clearance of inoculated infective stage (L3) or single sex infection or segregation of male and female to different organs of infected host resulted in amicrofilaraemic condition. With respect to antibody response, those animals cleared L3 after inoculation and those with adult worm as well as mf showed low antibody levels. But those with developmental fourth stage and/or adult worms without mf showed significantly higher antibody levels.
Resumo:
Abstract : Host-Cell Factor 1 (HCF-1) was first discovered in the study of the herpes simplex virus (HSV) infection. HCF-1 is one of the two cellular proteins that compose the VP16-induced complex, a key activator of HSV lytic infection. lncleed, when HSV infects human cells, it is able to enter two modes of infection: lytic or latent. The V`P16-induced complex promotes the lytic mode and in so doing the virus targets important cellular regulatory proteins, such as HCF-1, to manipulate the status of the infected cell. Indeed, HCF-1 regulates human cell proliferation and the cell cycle at different steps. In human, HCF-1 is unusual in that it undergoes a process of proteolytic maturation that results from cleavages at six centrally located 26 amino acid repeats called HCF-1pro repeats. This generates a heterodimeric complex of stably associated amino- (HCF-1n) and carboxy- (HCF-1c) terminal subunits. The absence of the HCF-1 N or HCF-1; subunit leads predominantly to either G1 or M phase defects, respectively. We have hypothesized that HCF-1 forms a heterodimeric complex to permit communication between the two subunits of HCF-1 involved in regulating different phases of the cell cycle. Indeed, there is evidence for such inter-subunit communication because a point mutation called P134S in the HCF-1N subunit in the temperature-sensitive hamster cell line tsBN67 causes, addition to G1- phase defects associated with the HCF-1n subunit, M-phase defects similar to the defects seen upon loss of HCF-1 function. Furthermore, inhibition of the proteolytic maturation of HCF-1 by deletion of the six HCF-1pro repeats (HCF-1Aimo) also leads to M-phase defects, specifically cytokinesis defects leading to binucleation, indicating that there is loss of HCF-15 function in the absence of HCF-1 maturation. I demonstrate that individual point mutations in each of the six HCF-1pro repeats that prevent HCF-1 proteolytic maturation also lead to binucleation; however, this defect can be latgely rescued by the presence of just one HCF-1pRO sequence in I-ICF»1. These results argue that processing itself is important for the HCF-1g function. In fact, until now, the hypothesis was that the proteolytic processing per se is more important for HCF-1C function than the proteolytic processing region. But I show that processing per se is not sufticient to rescue multinucleation, but that the HCF-lpm sequence itself is crucial. This discovery leads to the conclusion that the I-ICF-1pRO repeats have an additional function important for HCF-le function. From the studies of others, one potential function of the HCF-lrxo tepeats is as a binding site for O-link NAcetyl glycosamine tansferase (OGT) to glycosylate an HCF-1n-sunbunit region called the Basic region. This new function suggests the Basic region of HCF-1n is also implicated in the communication between the two subunits. This inter-subunit communication was analyzed in more detail with the studies of the Pl34S mutation and the residues 382-450 region of HCF-l that when removed prevents HCF-l subunit association. I demonstrate that the point mutation also leads to a binucleation defect in Hela cells as well as in the tsBN67 cells. In addition, the effect of this mutation on the regulation of HCF-1c activity seems to interfere with that of the HCF-lpgg repeats because the sum of the deletion of the proteolytic processing region and the point mutation surprisingly leads to re-establishment of correct cytokinesis. The study of the 382-450 HCF-lN region also yielded surprising results. This region important for the association of the two subunits is also important for both HCF-1c function in M phase and G1 phase progression. Thus, I have discovered two main functions of this region: its role in the regulation of HCF-lc function in M phase and its involvement in the regulation of G1/S phase ?- an HCF-1n function. These results support the importance of inter-subunit communication in HCF-1 functions. My research illuminates the understanding of the interaction of the two subunits by showing that the whole HCF-1n subunit is involved in the inter-subunit communication in order to regulate HCF-1c function. For this work, I was concentrated on the study of cytokinesis; the first phenotype showing the role of HCF-1c in the M phase. Then, I extended the study of the M phase with analysis of steps earlier to cytokinesis. Because some defects in the chromosome segregation was already described in the absence of HCF-1, I decided to continue the study of M phase by checking effects on the chromosome segregation. I showed that the HCF-1n subunit and HCF-1pro repeats are both important for this key step of M phase. I show that the binucleation phenotype resulting from deletion or mutation in HCF-1pro repeats, Pl34S point mutation or the lack of the region 382-450 are correlated with micronuclei, and chromosome segregation and alignment defects. This suggests that HCF«lç already regulates M phase during an early step and could be involved in the complex regulation of chromosome segregation. Because one of the major roles of HCF-1 is to be a transcription regulator, I also checked the capacity of HCF-1 to bind to the chromatin in my different cell lines. All my recombinant proteins can bind the chromatin, except for, as previously described, the HCF-1 with the P134S point mutation, This suggests that the binding of HCF-1 to the chromatin is not dependant to the Basic and proteolytic regions but more to the Kelch domain. Thus, if the function of HCF-ig in M phase is dependant to its chromatin association, the intercommunication and the proteolytic region are not involved in the ability to bind to the chromatin but more to bind to the right place of the chromatin or to be associated with the co-factors. Résumé : L'étude de l'infection par le virus Herpes Simplex (HSV) a permis la découverte de la protéine HCF-1 (Host-Cell Factor). HCF-1 est une des protéines cellulaires qui font partie du complexe induit par VP16 ; ce complexe est la clef pour l'activation de la phase lytique de HSV. Afin de manipuler les cellules infectées, le complexe induit pas le VPIG devrait donc cibler les protéines importantes pour la régulation cellulaire, telles que la protéine HCF-1. Cette dernière s'avère donc être un senseur pour la cellule et devrait également jouer un rôle de régulation lors des différentes phases du cycle cellulaire. Chez l'humain, HCF-1 a la particularité de devoir passer par une phase de maturation pour devenir active. Lors de cette maturation, la protéine subit une coupure protéolytique au niveau de six répétitions composées de 26 acides aminés, appelé HCF-1pro repeats. Cette coupure engendre la formation d'un complexe formé de deux sous-unités, HCF-1n et HCF-1c, associées l'une à l'autre de façon stable. Enlever la sous-unité HCF-IN ou C entraîne respectivement des défauts dans la phase G1 et M. Nous pensons donc que HCF-1 forme un complexe hétérodimérique afin de permettre la communication entre les molécules impliquées dans la régulation des différentes phases du cycle cellulaire. Cette hypothèse est déduite suite à deux études: l'une réalisée sur la lignée cellulaire tsBN67 et l'autre portant sur l'inhibition de la maturation protéolytique. La lignée cellulaire tsBN67, sensible à la température, porte la mutation Pl 345 dans la sous-unité HCF-1n. Cette mutation, en plus d'occasionner des défauts dans la phase G1 (défauts liés à la sous-unité HCF-1N), a aussi pour conséquence d'entrainer des défauts dans la phase M, défauts similaires à ceux dus a la perte de la sous-unité HCF-1c. Quant à la maturation protéolytique, l'absence de la région de la protéolyse provoque la binucléation, défaut lié à la cytokinèse, indiquant la perte de la fonction de la sous-unité HCF-1c. Au cours de ma thèse, j'ai démontré que des mutations dans les HCF-1=no repeats, qui bloquent la protéolyse, engendrent la binucléation ; cependant ce défaut peut être corrigé pas l'ajout d'un HCF-1pro repeat dans un HCF-1 ne contenant pas la région protéolytique. Ces résultats soutiennent l'idée que la région protéolytique est importante pour le bon fonctionnement de HCF-1c. En réalité jusqu'a maintenant on supposait que le mécanisme de coupure était plus important que la région impliquée pour la régulation de la fonction de HCF-1;. Mais mon étude montre que la protéolyse n'est pas suffisante pour éviter la binucléation ; en effet, les HCF-1pro repeats semblent jouer le rôle essentiel dans le cycle cellulaire. Cette découverte conduit à la conclusion que les HCF-1pro repeats ont sûrement une fonction autre qui serait cruciale pour la foncton de HCF-1c. Une des fonctions possibles est d'être le site de liaison de l'O-linked N-acetylglucosamine transférase (OGT) qui glycosylerait la région Basique de HCF-1n. Cette nouvelle fonction suggère que la région Basique est aussi impliquée dans la communication entre les deux sous- unités. L'intercommunication entre les deux sous-unités ai été d'ailleurs analysée plus en détail dans mon travail à travers l'étude de la mutation Pl34S et de la région 382-450, essentielle pour l'association des deux sous»unités. J'ai ainsi démontré que la mutation P134S entraînait aussi des défauts dans la cytokinése dans la lignée cellulaire Hela, de plus, son influence sur HCF-1c semble interférer avec celle de la région protéolytique. En effet, la superposition de ces deux modifications dans HCF-1 conduit au rétablissement d'une cytokinése correcte. Concernant la région 382 à 450, les résultats ont été assez surprenants, la perte de cette région provoque l'arrêt du cycle en G1 et la binucléation, ce qui tend à prouver son importance pour le bon fonctionnement de HCF-1n et de HCF-1c. Cette découverte appuie par conséquent l'hypotl1èse d'une intercommunicatzion entre les deux sous-unités mettant en jeu les différentes régions de HCF-1n. Grâce à mes recherches, j'ai pu améliorer la compréhension de l'interaction des deux sous-unités de HCF-1 en montrant que toutes les régions de HCF-1n sont engagées dans un processus d'intercommunication, dont le but est de réguler l'action de HCF-1c. J'ai également mis en évidence une nouvelle étape de la maturation de HCF-1 qui représente une phase importante pour l'activation de la fonction de HCF-1c. Afin de mettre à jour cette découverte, je me suis concentrée sur l'étude de l'impact de ces régions au niveau de la cytokinése qui fut le premier phénotype démontrant le rôle de HCF-1c dans la phase M. A ce jour, nous savons que HCF-1c joue un rôle dans la cytokinèse, nous ne connaissons pas encore sa fonction précise. Dans le but de cerner plus précisément cette fonction, j'ai investigué des étapes ultérieures ai la cytokinèse. Des défauts dans la ségrégation des chromosomes avaient déjà été observés, ai donc continué l'étude en prouvant que HCF-1n et les HCF-1pro repeats sont aussi importants pour le bon fonctionnement de cette étape clef également régulée par HCF-1c. J' ai aussi montré que la région 382-450 et la mutation P134S sont associées à un taux élevé de micronoyaux, de défauts dans la ségrégation des chromosomes. L'une des fonctions principales de HCF-1 étant la régulation de la transcription, j'ai aussi contrôlé la capacité de HCF-1 à se lier à la chromatine après insertion de mutations ou délétions dans HCF-1n et dans la région protéolytique. Or, à l'exception des HCF-1 contenant la mutation P134S, la sous-unité HCF-1c des HCF-1 tronquées se lie correctement à la chromatine. Cette constatation suggère que la liaison entre HCF-1c et chromatine n'est pas dépendante de la région Basique ou Protéolytique mais peut-être vraisemblablement de la région Kelch. Donc si le rôle de HCF-1c est dépendant de sa capacité â activer la transcription, l'intercommunication entre les deux sous-unités et la région protéolytique joueraient un rôle important non pas dans son habileté à se lier à la chromatine, mais dans la capacité de HCF-1 à s'associer aux co-facteurs ou à se placer sur les bonnes régions du génome.