929 resultados para High strength steel


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in modern structural design have created a demand for products which are light but possess high strength. The objective is a reduction in fuel consumption and weight of materials to satisfy both economic and environmental criteria. Cold roll forming has the potential to fulfil this requirement. The bending process is controlled by the shape of the profile machined on the periphery of the rolls. A CNC lathe can machine complicated profiles to a high standard of precision, but the expertise of a numerical control programmer is required. A computer program was developed during this project, using the expert system concept, to calculate tool paths and consequently to expedite the procurement of the machine control tapes whilst removing the need for a skilled programmer. Codifying the expertise of a human and the encapsulation of knowledge within a computer memory, destroys the dependency on highly trained people whose services can be costly, inconsistent and unreliable. A successful cold roll forming operation, where the product is geometrically correct and free from visual defects, is not easy to attain. The geometry of the sheet after travelling through the rolling mill depends on the residual strains generated by the elastic-plastic deformation. Accurate evaluation of the residual strains can provide the basis for predicting the geometry of the section. A study of geometric and material non-linearity, yield criteria, material hardening and stress-strain relationships was undertaken in this research project. The finite element method was chosen to provide a mathematical model of the bending process and, to ensure an efficient manipulation of the large stiffness matrices, the frontal solution was applied. A series of experimental investigations provided data to compare with corresponding values obtained from the theoretical modelling. A computer simulation, capable of predicting that a design will be satisfactory prior to the manufacture of the rolls, would allow effort to be concentrated into devising an optimum design where costs are minimised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adhesive bonding of aluminium is widely used in the aerospace industry. High initial bood strengths can be obtained, but bond failure occurs atter prolonged exposure to humid enviroments. The thesis contains details ot a test procedure which has been designed and developed for the assessment of different alloys, pretreatments, and adhesives, which will give adhesively bonded aluminium joints of high strength coupled with long term durability. The test involves assembly of lap shear specimens in a precision jig using 250 ballotini spacers in the adhesive to control the bond line thickness. The test is modified by drilling three accurately located holes through the bonded area after assembly of the joint and curing of the adhesive. Further important features at the test, such as fillet control, are detailed. The test was assessed, modified and developed to give a reliable and reproducible method which would discriminate amongst different bonding systems after exposure to humid test environments. This is the first test to have achieved the discrimination necessary for short term assessment of bond systems where long term durability is required. Even better discrimination has been obtained by applying stress in a stress humidity test. Having established accurate, reliable and discriminating test methods they were used to study the durability of structural epoxy adhesive bonds to aluminium as a function of alloy, pretreatment, adhesive and environment. It was established that the long term durability or adhesively bonded aluminium was directly related to the infulence of water migrating within the adhesive. Pretreatments differed in their ability to prevent hydration of the aluminium oxide by the water absorbed within the adhesive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this research is to promote the use of G.R.P. as a structural material. In the past, the use of G.R.P. has been confined to non-load carrying applications. Such uses are still rapidly increasing but in addition significant changes have been made during the last decade in the development of semi-structural and now even fully structural applications. Glass-reinforced plastic is characterized by a high strength but a relatively low modulus of elasticity. For this reasona G.R.P. structure can expect to show large deformations as a result of which the individual structural members will fail under load due to a loss of stability rather than approaching the ultimate strength of the material. For this reason the selection of the geometrical shapes of G.R.P. structural elements is considered to be an important factor in designing G.R.P. structures. The first chapter of this thesis deals with a general review of the theoretical and experimental methods used to describe the structural properties of G.R.P. The research programme includes five stages dealing with the structural behaviour of G.R.P. The first stage (Chapter 2) begins with selecting and designing an optimum box beam cross-section which gives the maximum flexural and torsional rigidity. The second stage of investigation (Chapter 3) deals with beam to beam connections. A joint was designed and manufactured with different types of fasteners used to connect two beam units. A suitable fastener was selected and the research extended to cover the behaviour of long span beams using multiple joints. The third part of the investigation includes a study of the behaviour of box beams subjected to combined bending, shear and torsion. A special torque rig was developed to perform the tests. Creep deformation of 6 m span G.R.P. was investigated as the fourth stage under a range of loading conditions. As a result of the phenomenon of post buckling behaviour exhibited in the compression flange during testing of box beams during earlier stages of the investigation it was decided to consider this phenomenon in more detail in the final stage of the investigation. G.R.P. plates with different fibre orientation were subjected to uniaxial compression and tested up to failure. In all stages of the investigation theoretical predictions and experimental results were compared and generally good correlation between theory and experimental data was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Linear Elastic Fracture Mechanics has been used to study the microstructural factors controlling the strength and toughness of two alpha-beta, titanium alloys. Fracture toughness was found to be independent of orientation for alloy Ti/6A1/4-V, but orientation dependent for IMI 700, bend and tension specimens giving similar toughness values. Increasing the solution temperature led to the usual inverse relationship between strength and toughness, with toughness becoming a minimum as the beta transus was approached. The production of a double heat treated microstructure led to a 100% increase in toughness in the high strength alloy and a 20% increase in alloy Ti/6A1/4V, with little decrease in strength. The double heat treated microstruoture was produced by cooling from the beta field into the alpha beta field, followed. by conventional solution treatment and ageing. Forging above the beta transus led to an increase in toughness over alpha beta forging in the high strength alloy, but had little effect on the toughness of Ti/6A1/4V. Light and electron microscopy showed that the increased toughness resulted from the alpha phase being changed from mainly continuous to a discontinuous platelet form in a transformed beta matrix. Void formation occurred at the alpha-beta interface and crack propagation was via the interface or across the platelet depending on which process required the least energy. Varying the solution treatment temperature produced a varying interplatelet spacing and platelet thickness. The finest interplatelet spacing was associated with the highest toughness, since a higher applied stress was required to give the necessary stress concentration to initiate void formation. The thickest alpha platelet size gave the highest toughness which could be interpreted in terms of Krafftt's "process zone size" and the critical crack tip displacement criterion by Hahn and Rosenfield from an analysis by Goodier and Field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previously, specifications for mechanical properties of casting alloys were based on separately cast test bars. This practice provided consistently reproducible results; thus, any change in conditions was reflected in changes in the mechanical properties of the test coupons. These test specimens, however, did not necessarily reflect the actual mechanical properties of the castings they were supposed to represent'. Factors such as section thickness and casting configuration affect the solidification rate and soundness of the casting thereby raising or lowering its mechanical properties in comparison with separately cast test specimens. In the work now reported, casting shapes were developed to investigate the variations of section thickness, chemical analysis and heat treatment on the mechanical properties of a high strength Aluminium alloy under varying chilling conditions. In addition, an insight was sought into the behaviour of chills under more practical conditions. Finally, it was demonstrated that additional information could be derived from the radiographs which form an essential part of the quality control of premium quality castings. As a result of the work, it is now possible to select analysis and chilling conditions to optimize the as cast and the heat treated mechanical properties of Aluminum 7% Silicon 0.3% Magnesium alloy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pulsed Nd:YAG has been adopted successfully in welding process of thin (0.7 mm) Ti6Al4V. Laser welding of such thin sheet requires a small focal spot, good laser beam quality and fast travel speed, since too much heat generation can cause distortion for thin sheet weld. The microstructures of Ti6Al4V were complex and strongly affected the mechanical properties. These structures include: a´ martensite, metastable ß, Widmanstätten, bimodal, lamellar and equiaxed microstructure. Bimodal and Widmanstätten structures exhibit a good-balance between strength and ductility. The microstructure of pulsed Nd:YAG welded Ti6Al4V was primarily a´ martensite, which showed the lowest ductility but not significantly high strength. A heat treatment at 950 followed by furnace cooling can transform the microstructure in the weld from a´ martensite structure into Widmanstätten structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The precipitation reactions occurring in a series of copper-based alloys selected from the system copper-chromium-zirconium have been studied by resistometric and metallographic techniques. A survey of the factors influencing the development of copper-based alloys for high strength, high conductivity applications is followed by a more general review of contemporary materials, and illustrates that the most promising alloys are those containing chromium and zirconium. The few systematic attempts to study alloys from this system have been collated, discussed, and used as a basis for the selection of four alloy compositions viz:- Cu - 0.4% Cr Cu - 0.24. Zr Cu - 0. 3% Cr - 0.1% Zr Cu - 0.2% Cr - 0.2% Zr A description of the experimental techniques used to study the precipitation behaviour of these materials is preceeded by a discussion of the currently accepted theories relating to precipitate nucleation and growth. The experimental results are presented and discussed for each of the alloys independently, and are then treated jointly to obtain an overall assessment of the way in which the precipitation kinetics, metallography and mechanical properties vary with alloy composition and heat treatment. The metastable solid solution of copper-chromium is found to decompose by the rejection of chromium particles which maintain a coherent interface and a Kurdjumov-Sachs type crystallographic orientation relationship with the copper matrix. The addition of 0.1% zirconium to the alloy retards the rate of transformation by a factor of ten and modifies the dispersion characteristics of the precipitate without markedly altering the morphology. Further additions of zirconium lead to the growth of stacking faults during ageing, which provide favourable nucleation sites for the chromium precipitate. The partial dislocations bounding such stacking faults are also found to provide mobile heterogeneous nucleation sources for the precipitation reactions occurring in copper-zirconium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In part 1 of this article, cleavage initiation in the intercritically reheated coarse-grained heat affected zone (IC CG HAZ) of high-strength low-alloy (HSLA) steels was determined to occur between two closely spaced blocky MA particles. Blunt notch, crack tip opening displacement (CTOD), and precracked Charpy testing were used in this investigation to determine the failure criteria required for cleavage initiation to occur by this mechanism in the IC CG HAZ. It was found that the attainment of a critical level of strain was required in addition to a critical level of stress. This does not occur in the case of high strain rate testing, for example, during precracked Charpy testing. A different cleavage initiation mechanism is then found to operate. The precise fracture criteria and microstructural requirements (described in part I of this article) result in competition between potential cleavage initiation mechanisms in the IC CG HAZ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As time passed, humanity needed the development of new materials used in various activities. High strength materials such as titanium and Inconel for example, had been studied because they are widely used for implants in biomedicine, as well as their use in aerospace and automotive industries. Because of its thermal and mechanical properties, these materials are considered difficult to machine, promoting a rapid wear of cutting tools, primarily caused by the high temperatures in machining. With the development of new materials has emerged the need of developing new manufacturing processes. One of today’s innovative processes is the micro-manufacturing. Being a process with a defined cutting tool geometry, burr formation is a constant and undesirable phenomenon formed during the machininig process. Being detrimental to the manufacturing process, overspending deburring operations are constantly employed leading to increase the aggregate cost to the manufactured material. Assembly components are also impaired if there is no control of the burr, with consequences including the disposal of components due to the occurence of this phenomenon. This paper presents the study of micro-milling Inconel 718, investigating influential parameters in the formation of burrs in order to minimize the occurrence of this phenome non. Different feed rates per tooth and cutting speed are evaluated, and different cutting fluids with different methods of applying the fluid. Adding graphene to cutting fluids was considered as a variable to be investigated, which is considered an excellent solid lubricant, in addition to increasing the thermal conductivity of the cooling solution (AZIMI; MOZAF FARI, 2015). The micro-milling temperature was evaluated in the present work. It was observed a new phenomenon that causes the machined surface temperature decreases below room temperature when using the solution water + oil. This phenomenon is explained in further chapters. In order to unravel this phenomenon, a new test was proposed and, from this test, it can be concluded, comparatively, which cutting fluid has a better cooling property.Using cutting fluid with different thermal properties has shown influence when analy zing burr formation and reducing machining temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hochfeste Faserseile sind aufgrund ihrer hohen spezifischen Festigkeit prädestiniert für dynamische Anwendungen in der Fördertechnik. Der Kenntnisstand über die Zeitfestigkeit zugehöriger Endverbindungen zur Krafteinleitung ist jedoch unzureichend. Gegenstand der vorgelegten Arbeit ist die Entwicklung einer für die Anwendung von hochfesten Faserseilen geeigneten Prüfvorschrift sowie die vergleichende Untersuchung bekannter Endverbindungen für hochfeste Faserseile im Zugschwellversuch.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combining intrinsically conducting polymers with carbon nanotubes (CNT) helps in creating composites with superior electrical and thermal characteristics. These composites are capable of replacing metals and semiconductors as they possess unique combination of electrical conductivity, flexibility, stretchability, softness and bio-compatibility. Their potential for use in various organic devices such as super capacitors, printable conductors, optoelectronic devices, sensors, actuators, electrochemical devices, electromagnetic interference shielding, field effect transistors, LEDs, thermoelectrics etc. makes them excellent substitutes for present day semiconductors.However, many of these potential applications have not been fully exploited because of various open–ended challenges. Composites meant for use in organic devices require highly stable conductivity for the longevity of the devices. CNT when incorporated at specific proportions, and with special methods contributes quite positively to this end.The increasing demand for energy and depleting fossil fuel reserves has broadened the scope for research into alternative energy sources. A unique and efficient method for harnessing energy is thermoelectric energy conversion method. Here, heat is converted directly into electricity using a class of materials known as thermoelectric materials. Though polymers have low electrical conductivity and thermo power, their low thermal conductivity favours use as a thermoelectric material. The thermally disconnected, but electrically connected carrier pathways in CNT/Polymer composites can satisfy the so-called “phonon-glass/electron-crystal” property required for thermoelectric materials. Strain sensing is commonly used for monitoring in engineering, medicine, space or ocean research. Polymeric composites are ideal candidates for the manufacture of strain sensors. Conducting elastomeric composites containing CNT are widely used for this application. These CNT/Polymer composites offer resistance change over a large strain range due to the low Young‟s modulus and higher elasticity. They are also capable of covering surfaces with arbitrary curvatures.Due to the high operating frequency and bandwidth of electronic equipments electromagnetic interference (EMI) has attained the tag of an „environmental pollutant‟, affecting other electronic devices as well as living organisms. Among the EMI shielding materials, polymer composites based on carbon nanotubes show great promise. High strength and stiffness, extremely high aspect ratio, and good electrical conductivity of CNT make it a filler of choice for shielding applications. A method for better dispersion, orientation and connectivity of the CNT in polymer matrix is required to enhance conductivity and EMI shielding. This thesis presents a detailed study on the synthesis of functionalised multiwalled carbon nanotube/polyaniline composites and their application in electronic devices. The major areas focused include DC conductivity retention at high temperature, thermoelectric, strain sensing and electromagnetic interference shielding properties, thermogravimetric, dynamic mechanical and tensile analysis in addition to structural and morphological studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A utilização de adesivos hoje em dia encontra-se de tal forma disseminada que é transversal a diversos setores do mercado, como a indústria aeroespacial, aeronáutica, automóvel e do desporto. De facto, o uso de ligações adesivas em estruturas mecânicas tem vindo a crescer, na medida em que estes têm substituído os métodos de ligação convencionais, tais como brasagem, rebitagem, ligações aparafusadas e soldadura. No geral, as ligações adesivas apresentam diversas vantagens, desde a diminuição do peso, redução da concentração de tensões, facilidade de fabrico, bom comportamento a solicitações cíclicas e capacidade de unir materiais dissimilares. O crescente interesse da indústria nas ligações adesivas tem por base o aumento da confiabilidade nos métodos de previsão de resistência de estruturas adesivas. Neste contexto surgem os Modelos de Dano Coesivo, que permitem simular o crescimento do dano em estruturas, após introdução das leis coesivas previamente estimadas nos modelos numéricos. Uma das fases mais importantes neste método de previsão é a estimativa das leis coesivas em tração e corte, pelo que se torna de grande relevância a existência e validação de métodos precisos para a obtenção destas leis. Este trabalho visa a validação de leis coesivas em tração e corte, estimadas pela aplicação do método direto, na previsão da resistência de juntas com geometria de solicitação mista. Neste âmbito, ensaiaram-se JSS e JSD com diferentes comprimentos de sobreposição e com adesivos de diferente ductilidade. Foram considerados os adesivos Araldite® AV138, de elevada resistência e baixa ductilidade, o Araldite® 2015, de moderada ductilidade e resistência intermédia, e o SikaForce® 7752, de baixa resistência e elevada ductilidade. As leis coesivas em modo puro serviram de base para a criação de leis simplificadas triangulares, trapezoidais e linearesexponenciais, que foram testadas para cada um dos adesivos. A validação das mesmas consumou-se por comparação das previsões numéricas com os resultados experimentais. Procedeu-se também a uma análise de tensões de arrancamento e de corte no adesivo, de modo a compreender a influência das tensões na resistência das juntas. A utilização do método direto permitiu obter previsões de resistência bastante precisas, indicando as formas de leis coesivas mais adequadas para cada conjunto adesivo/geometria de junta. Para além disso, para as condições geométricas e materiais consideradas, este estudo permitiu concluir que não se cometem erros significativos na escolha de uma lei menos adequada.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nos dias de hoje, a ligação adesiva de estruturas complexas que não poderiam ou não seriam tão fáceis de ser fabricadas numa só peça é cada vez mais usual. As juntas adesivas têm vindo a substituir muitos outros métodos de ligação, como por exemplo ligações aparafusadas, rebitas ou soldadas, devido às vantagens de facilidade na sua fabricação, resistência superior e capacidade de unir materiais diferentes. Por esta razão as juntas adesivas têm vindo a ser aplicadas cada vez mais em várias industrias como aeroespacial, aeronáutica, automóvel, naval e calçado. O tipo de adesivo a usar em determinada aplicação é principalmente escolhido consoante as suas características mecânicas e o tipo de resposta pretendida às solicitações impostas. Como exemplo de adesivo resistente e frágil existe o Araldite® AV138. Por outro lado, o adesivo Araldite® 2015 é menos resistente, mas apresenta maior ductilidade e flexibilidade. Além dos adesivos Araldite® comerciais, existem adesivos de poliuretano que combinam características de elevada resistência com características de grande ductilidade e flexibilidade, como por exemplo o Sikaforce® 7752. Esta dissertação tem como objetivo estudar experimentalmente e numericamente, através de modelos de dano coesivo (MDC), o comportamento de diferentes configurações de junta em T quando sujeitas a solicitações de arrancamento. Consideram-se os adesivos anteriormente mencionados para testar as juntas sob diferentes tipos de adesivos. A junta em T é constituída por 2 aderentes em L de alumínio e um aderente base também em alumínio, unidos por uma camada de adesivo. Experimentalmente é feito um estudo da resistência da junta com a variação da espessura dos aderentes em L (tP2). Com a análise numérica são estudadas as distribuições de tensões, evolução do dano, modos de rotura e resistência. Além disso, realizou-se um estudo numérico da existência ou não de adesivo de preenchimento na zona da curvatura dos aderentes em L nas tensões e na resistência da junta. Mostrouse que a variação da geometria nos aderentes em L, a presença de adesivo de preenchimento e o tipo de adesivo têm uma influência direta na resistência de junta. Os ensaios experimentais validaram os resultados numéricos e permitiram concluir que os MDC são uma técnica precisa para o estudo das geometrias das juntas em T.