878 resultados para Hierarchical Bayesian Metaanalysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of computer assisted orthopedic surgery (CAOS) the anterior pelvic plane (APP) is a common concept to determine the pelvic orientation by digitizing distinct pelvic landmarks. As percutaneous palpation is - especially for obese patients - known to be error-prone, B-mode ultrasound (US) imaging could provide an alternative means. Several concepts of using ultrasound imaging to determine the APP landmarks have been introduced. In this paper we present a novel technique, which uses local patch statistical shape models (SSMs) and a hierarchical speed of sound compensation strategy for an accurate determination of the APP. These patches are independently matched and instantiated with respect to associated point clouds derived from the acquired ultrasound images. Potential inaccuracies due to the assumption of a constant speed of sound are compensated by an extended reconstruction scheme. We validated our method with in-vitro studies using a plastic bone covered with a soft-tissue simulation phantom and with a preliminary cadaver trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. Results Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. Conclusion ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant human growth hormone (rhGH) therapy is used in the long-term treatment of children with growth disorders, but there is considerable treatment response variability. The exon 3-deleted growth hormone receptor polymorphism (GHR(d3)) may account for some of this variability. The authors performed a systematic review (to April 2011), including investigator-only data, to quantify the effects of the GHR(fl-d3) and GHR(d3-d3) genotypes on rhGH therapy response and used a recently established Bayesian inheritance model-free approach to meta-analyze the data. The primary outcome was the 1-year change-in-height standard-deviation score for the 2 genotypes. Eighteen data sets from 12 studies (1,527 children) were included. After several prior assumptions were tested, the most appropriate inheritance model was codominant (posterior probability = 0.93). Compared with noncarriers, carriers had median differences in 1-year change-in-height standard-deviation score of 0.09 (95% credible interval (CrI): 0.01, 0.17) for GHR(fl-d3) and of 0.14 (95% CrI: 0.02, 0.26) for GHR(d3-d3). However, the between-study standard deviation of 0.18 (95% CrI: 0.10, 0.33) was considerable. The authors tested by meta-regression for potential modifiers and found no substantial influence. They conclude that 1) the GHR(d3) polymorphism inheritance is codominant, contrasting with previous reports; 2) GHR(d3) genotypes account for modest increases in rhGH effects in children; and 3) considerable unexplained variability in responsiveness remains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Published evidence suggests that aspects of trial design lead to biased intervention effect estimates, but findings from different studies are inconsistent. This study combined data from 7 meta-epidemiologic studies and removed overlaps to derive a final data set of 234 unique meta-analyses containing 1973 trials. Outcome measures were classified as "mortality," "other objective," "or subjective," and Bayesian hierarchical models were used to estimate associations of trial characteristics with average bias and between-trial heterogeneity. Intervention effect estimates seemed to be exaggerated in trials with inadequate or unclear (vs. adequate) random-sequence generation (ratio of odds ratios, 0.89 [95% credible interval {CrI}, 0.82 to 0.96]) and with inadequate or unclear (vs. adequate) allocation concealment (ratio of odds ratios, 0.93 [CrI, 0.87 to 0.99]). Lack of or unclear double-blinding (vs. double-blinding) was associated with an average of 13% exaggeration of intervention effects (ratio of odds ratios, 0.87 [CrI, 0.79 to 0.96]), and between-trial heterogeneity was increased for such studies (SD increase in heterogeneity, 0.14 [CrI, 0.02 to 0.30]). For each characteristic, average bias and increases in between-trial heterogeneity were driven primarily by trials with subjective outcomes, with little evidence of bias in trials with objective and mortality outcomes. This study is limited by incomplete trial reporting, and findings may be confounded by other study design characteristics. Bias associated with study design characteristics may lead to exaggeration of intervention effect estimates and increases in between-trial heterogeneity in trials reporting subjectively assessed outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. No comprehensive systematic review has been published since 1998 about the frequency with which cancer patients use complementary and alternative medicine (CAM). Methods. MEDLINE, AMED, and Embase databases were searched for surveys published until January 2009. Surveys conducted in Australia, Canada, Europe, New Zealand, and the United States with at least 100 adult cancer patients were included. Detailed information on methods and results was independently extracted by 2 reviewers. Methodological quality was assessed using a criteria list developed according to the STROBE guideline. Exploratory random effects metaanalysis and metaregression were applied. Results. Studies from 18 countries (152; >65 000 cancer patients) were included. Heterogeneity of CAM use was high and to some extent explained by differences in survey methods. The combined prevalence for “current use” of CAM across all studies was 40%. The highest was in the United States and the lowest in Italy and the Netherlands. Metaanalysis suggested an increase in CAM use from an estimated 25% in the 1970s and 1980s to more than 32% in the 1990s and to 49% after 2000. Conclusions. The overall prevalence of CAM use found was lower than often claimed. However, there was some evidence that the use has increased considerably over the past years. Therefore, the health care systems ought to implement clear strategies of how to deal with this. To improve the validity and reporting of future surveys, the authors suggest criteria for methodological quality that should be fulfilled and reporting standards that should be required.