667 resultados para Hermit crabs
Resumo:
Brachyuran and anomuran decapod crabs do not occur in the extremely cold waters of the Antarctic continental shelf whereas caridean and other shrimp-like decapods, amphipods and isopods are highly abundant. Differing capacities for extracellular ion regulation, especially concerning magnesium, have been hypothesised to determine cold tolerance and by that the biogeography of Antarctic crustaceans. Magnesium is known to have a paralysing effect, which is even more distinct in the cold. As only few or no data exist on haemolymph ionic composition of Sub-Antarctic and Antarctic crustaceans, haemolymph samples of 12 species from these regions were analysed for the concentrations of major inorganic ions (Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-) by ion chromatography. Cation relationships guaranteed neuromuscular excitability in all species. Sulphate and potassium correlated positively with magnesium concentration. The Antarctic caridean decapod as well as the amphipods maintained low (6-20% of ambient sea water magnesium concentration), Sub-Antarctic brachyuran and anomuran crabs as well as the Antarctic isopods high (54-96% of ambient sea water magnesium concentration) haemolymph magnesium levels. In conclusion, magnesium regulation may explain the biogeography of decapods, but not that of the peracarids.
Resumo:
Homeostatic regulation allows organisms to secure basic physiological processes in a varying environment. To counteract fluctuations in ambient carbonate system speciation due to elevated seawater pCO2 (hypercapnia), many aquatic crustaceans excrete/accumulate acid-base equivalents through their gills; however, not much is known about the role of ammonia in this response. The present study investigated the effects of hypercapnia on acid-base and ammonia regulation in the Dungeness crab, Metacarcinus magister on the whole animal and isolated gill levels. Hemolymph pCO2 and [HCO3]- increased in M. magister acclimated to elevated pCO2 (330 Pa), while pH remained stable. Additionally, hemolymph [Na+], [Ca2+], and [SO4]2- were significantly increased. When challenged with varying pH during gill perfusion, the pH of the artificial hemolymph remained relatively unchanged. Overall, ammonia production and excretion, as well as oxygen consumption, were reduced in crabs acclimated to elevated pCO2, demonstrating that either (amino acid) oxidation is reduced in response to this particular stress, or nitrogenous wastes are excreted in an alternative form.