602 resultados para Hemato-oncologia
Resumo:
Background. Glioblastoma (GBM) is the most common primary tumor of central nervous system and it has a poor prognosis. Standard first line treatment, which includes surgery followed by adjuvant radio-chemotherapy,produces only modest benefits to survival. The interest for immunotherapy in this field derives from the development of new drugs and effective therapies as immune-check points inhibitors, adoptive T-cell approaches or dendritic cell (DC) based vaccines or a combinations of these. GBM is described as a typical “immune-deserted” cancer exhibiting a number of systemic and environmental immunosuppressive factors. Considering the role of microenvironment, and above all the lower tumor load and depletion of immunosuppressive cells in GBM, our hypothesis is that DC vaccine may induce an immune response. Main aims and study design. The main aim of this project is to study the role of immune system in GBM, including identification of potential prognostic and predictive markers of outcome and response to dendritic cell vaccine. Firstly, we performed a retrospective analysis on blood samples. Then, we analyzed the immuno-component in tissues samples of enrolled patients; and compared that with blood results. Then, the last part of the project is based on a prospective clinical trial on patients enrolled in DC-based vaccination produced at IRST Cell Factory and actually used for patients with melanoma and other tumors. The enrollment is still ongoing. Expected results. The project will i) develop an immune-panel of prognostic and predictive markers to help clinicians to improve the therapeutic strategy for GBM patients; ii) provide preliminary results on the effectiveness of immunotherapy on GBM patients.
Resumo:
Gastric cancer (GC) is a hard challenge for medical oncology, with globally over one million of new diagnoses each year and low survival rates. Gastric carcinogenesis is guided by the interaction of several risk factors, exerting through sequential histopathologic steps, including chronic gastritis, atrophic gastritis, intestinal metaplasia, dysplasia and cancer. GC is classified on the basis of anatomical, histological or molecular classification, reflecting the wide cancer heterogeneity, also highlighted by the inefficacy of the actual treatment schedules. Epigenetic mechanisms alterations affecting DNA methylation, histone methylation and acetylation, are a recognized hallmark of cancer and stand at the basis of gastric carcinogenesis and tumor development. The pharmacological targeting of these altered mechanisms is an attractive option for new cancer treatments. Aim of this study was to test the therapeutic potential of the compound CM-272 for GC, a selective and strong dual inhibitor of DNMT1 and EHMT2, which reached important results in pre-clinical models of other gastrointestinal malignancies. Moreover, in a GC patients case series, the expression of the target of the compound was tested, to prove the rationale for inhibition of DNMT1, EHMT2 and their functional adaptor were over-expressed in the majority of GC patients tissues. Through in-vitro testing of CM-272 alone and in combination with the most used chemotherapeutic treatments for GC in a panel of GC cell lines, this study demonstrated that the compound has a strong ability in inhibiting GC cells growth. Even though not directly inducing apoptosis, CM-272 was able to induce a senescent phenotype in GC cells, and to epigenetically reprogram the transcription of genes involved in phosphorylation cascades and mitochondria metabolism, thus affecting the growth and energetic machinery of cancer cells. In conclusion, the pharmacological targeting of epigenetic mechanisms demonstrated good potential pre-clinical models of GC, and further investigations to test in-vivo efficacy are needed.
Resumo:
During the pathogenesis of hemolytic uremic syndrome (HUS), a severe sequela of Shiga toxin (Stx)-producing Escherichia coli (STEC) gastrointestinal infections, before the toxin acts on the target endothelial cells of the kidney and brain, several Stx forms are transported in the bloodstream: free Stx; Stx bound to circulating cells through Gb3Cer and TLR4 receptors; and Stx associated to blood cell-derived microvesicles. The latter form is mainly responsible for the development of life-threatening HUS in 15% of STEC-infected patients. Stx consist of five B subunits non-covalently bound to a single A subunit (uncleaved Stx) which can be cleaved in two fragments (A1 and A2) held by a disulfide bond (cleaved Stx). After reduction, the enzymatically active A1 fragment responsible for toxicity is released. Cleaved and uncleaved Stx are biologically active but functionally different, thus their presence in patients’ blood could affect the onset of HUS. Currently, there are no effective therapies for the treatment of STEC-infected patients and the gold standard strategies available for the diagnosis are very expensive and time-consuming. In this thesis, by exploiting the resolving power of SERS technology (Amplified Raman Spectroscopy on Surfaces), a plasmonic biosensor was developed as effective diagnostic tool for early detection of Stx in patients’ sera. An acellular protein synthesis system for detecting cleaved Stx2a in human serum based on its greater translation inhibition after treatment with reducing agents was developed and used to identify cleaved Stx in STEC-infected patients’ sera. Pathogenic microvesicles from Stx2a-challenged blood from healthy donors were isolated and characterized. The antibiotic NAB815, acting as inhibitor of toxin binding to TLR4 expressed by circulating cells, was found to be effective in impairing the formation of blood cell-derived microvesicles containing Stx2a, also having a protective effect in cellular models. This approach could be proposed as an innovative treatment for HUS prevention.
Resumo:
La malattia di Parkinson è una malattia neurodegenerativa caratterizzata da una progressiva disfunzione motoria e cognitiva. È noto che l'età avanzata è il principale fattore di rischio per la malattia di Parkinson e alcuni studi hanno dimostrato un'accelerazione dell'età biologica nelle fasi più avanzate della malattia. Questo studio si propone di valutare se l'accelerazione dell'invecchiamento biologico descritta nelle fasi avanzate della malattia di Parkinson caratterizzi anche le prime fasi della malattia. A tal fine sono stati utilizzati due tipi di marcatori biologici di età, basati sull'analisi della metilazione del DNA del sangue (l'orologio epigenetico e sue varianti) e dei profili degli N-glicani nel plasma (GlycoAge Test). I biomarcatori sono stati valutati in campioni ottenuti da pazienti con malattia di Parkinson de novo, con diagnosi recente e non ancora in trattamento farmacologico, nonché da pazienti con stadi più avanzati della malattia e da controlli sani. I risultati ottenuti nelle prime fasi della malattia non mostrano segni di invecchiamento accelerato, che trovano conferma nelle fasi più avanzate. Dai dati di metilazione è possibile prevedere le proporzioni delle diverse popolazioni di leucociti. Questa analisi nelle prime fasi della malattia ha già evidenziato significative alterazioni che seguono in parte quelle caratteristiche dell'invecchiamento del sistema immunitario, suggerendo un'immunosenescenza accelerata nella malattia di Parkinson. Infine, i dati sulla metilazione del DNA sono stati analizzati per identificare le differenze nelle regioni metilate del genoma tra pazienti con malattia di Parkinson e controlli. I risultati suggeriscono l'esistenza di piccole ma significative alterazioni nella metilazione del DNA che caratterizzano lo stadio precoce e/o avanzato della malattia. In conclusione, questo studio suggerisce che le prime fasi della malattia di Parkinson sono caratterizzate da specifiche alterazioni epigenetiche e invecchiamento precoce del sistema immunitario, che tuttavia non si traducono in un'alterazione dei biomarcatori di invecchiamento epigenetici e glicomici.
Resumo:
HER2 overexpression is observed in 20-30% of invasive breast carcinomas and it is correlated with poor prognosis. Although targeted therapies have revolutionized the treatment of HER2-positive breast cancer, a high number of patients presented primary or acquired resistance to monoclonal antibodies and tyrosine kinase inhibitors. Tumor heterogenicity, epithelial to mesenchymal transition (EMT) and cancer stem cells are key factors in target therapy resistance and tumor progression. The aim of this project was to discover alternative therapeutic strategies to over-come tumor resistance by harnessing immune system and looking for new targetable molecules. The results reported introduce a virus-like particles-based vaccine against HER2 as promising therapeutic approach to treat HER2-positive tumors. The high and persistent anti-HER2 antibody titers elicited by the vaccine significantly inhibited tumor growth and metastases onset. Furthermore, the polyclonal response induced by the vaccine also inhibited human HER2-positive breast cancer cells resistant to trastuzumab in vitro, suggesting its efficacy also on trastuzumab resistant tumors. To identify new therapeutic targets to treat progressed breast cancer, we took advantage from a dynamic model of HER2 expression obtained in our laboratory, in which HER2 loss and cancer progression were associated with the acquisition of EMT and stemness features. Targeting EMT-involved molecules, such as PDGFR-β, or the induction of epithelial markers, like E-cadherin, proved to be successful strategy to impair HER2-negative tumor growth. Density alterations, which might be induced by anti-HER2 target therapies, in cell culture condition of a cell line with a labile HER2 expression, caused HER2 loss probably as consequence of more aggressive subpopulations which prevail over the others. These subpopulations showed an increased EMT and stemness profile, confirming that targeting EMT-involved molecules or antigen expressed by cancer stem cells together with anti-HER2 target therapies is a valid strategy to inhibit HER2-positive cells and simultaneously prevent selection of more aggressive clone.
Resumo:
L'utilità clinica dell’uso routinario delle tecniche di sequenziamento di nuova generazione (NGS) nei pazienti con cancro colorettale metastatico andrebbe approfondita. In questo studio, è stato valutato l'impatto di un pannello NGS da 52 geni utilizzato nella pratica clinica di routine. Abbiamo analizzato i risultati dei test molecolari multigenici in pazienti con carcinoma colorettale metastatico (mCRC) in uno studio osservazionale, retrospettivo e monocentrico su pazienti affetti da carcinoma colorettale metastatico consecutivamente testati presso un centro oncologico italiano tra giugno 2019 e dicembre 2020. Le analisi di sopravvivenza sono state effettuate con il metodo Kaplan-Meier, test log-rank e modello di Cox. Complessivamente sono stati inclusi 179 pazienti con mCRC. Il follow-up mediano è stato di 33 mesi (IQR: 28,45–NR). I quattro geni più frequentemente mutati sono stati: KRAS (48,6%), PIK3CA (22,4%), BRAF (14,5%) e APC (8,4%). È stata trovata un'associazione positiva tra la sopravvivenza globale (OS) e le mutazioni KRAS con un'alta frequenza allelica variante (VAF) [HR: 0,60 (0.36 – 0.99), P=0.047]. La mutazione BRAF era associata a OS inferiore [HR: 2,62 (1,59-4,32), P <0,001]. Il panello NGS ha consentito a otto pazienti di accedere a terapie a bersaglio molecolare non ancora registrate per il cancro colorettale. In conclusione, i pannelli NGS in mCRC sono fattibili nella pratica clinica in laboratori di riferimento per consentire un impatto inferiore sui costi e un aggiornamento regolare. La mutazione di BRAF risulta associata a una prognosi peggiore. Le mutazioni di KRAS con un’elevata variazione di frequenza allelica erano associate a una sopravvivenza globale superiore rispetto ai pazienti KRAS non mutati. Sono necessari studi più approfonditi per analizzare meglio i fattori prognostici.
Resumo:
Growing evidence indicates that cell and nuclear deformability plays a crucial role in the determination of cancer cells tumorigenic and metastatic potential. The perinuclear actin cap, by wrapping the nucleus with a functional network of actomyosin cables, can modulate nuclear architecture and consequently cell/nuclear elasticity. The hepatocyte growth factor receptor (MET) stands out among other membrane receptors as crucial player of the actin filaments organization, but no data are available on a specific role for MET in the actin cap assembly and the overall nuclear architecture organization. In a cell system characterized by MET hyperactivation, we observed a strong rearrangement of the cellular actin caps, with a complete dismantling of apical stress fibers and a strikingly enhanced nuclear height. CRISPR/Cas9 silencing of MET completely reverted the aberrant phenotype, resulting in flattened cells with perfectly aligned perinuclear actomyosin bundles, as well as decreased MAPK and PI3K/AKT signaling, cell proliferation rate and aggressiveness. Interestingly, MET ablated cells acquired a remarkably directed and polarized migratory phenotype, contrarily to cells with MET sustained activation showing meandering random walk. A pathway enrichment analysis comparing MET-activated and MET-KO cells RNAseq data, unveiled the contribution of multiple pathways associated with cytoskeleton remodeling, regulation of cell shape and response to mechanical stimuli. In line, the co-transcriptional activator YAP1, playing a major role in cell mechanosensing and focal adhesions/actin stabilization, appeared the culprit of the genetic reassembling of KO cells. Indeed, MET silencing was shown to induce YAP1 nuclear shuttling and increased co-transcriptional activity. Finally, we were able to induce in a normal epithelial model a phenotype closer to MET activated cancer cells only by introducing a constitutive fusion protein of MET. Taken together, our results demonstrate a new mechanism of MET-mediated actin remodeling responsible for a tumor-initiating capacity and meandering random migration, which requires YAP1 inactivation.
Resumo:
The Consensus Molecular Subtypes (CMSs) classification stratifies colorectal cancer (CRC) into four well-defined molecular subgroups, providing incredible support to personalized medicine. Indeed, the huge inter-patient heterogeneity observed in CRC makes it difficult to define a therapeutic strategy from which every patient can benefit. Unfortunately, so far really few targetable biomarkers are known in the CRC setting, leading to an urgent need for new targeted therapies. Here we performed a bioinformatic meta-analysis over a cohort of 1700 CMS-stratified CRC patients, identifying a negative correlation between high levels of anaplastic lymphoma kinase (ALK) expression and relapse-free survival, exclusively in the CMS1 subtype. No correlation with ALK expression was pointed out in the other three subgroups. The association of ALK with CMS1 led to generate the hypothesis that ALK pharmacological inhibition may elicit therapeutic potential in this subgroup. Thus, we tested ALK inhibitors and an ALK-directed ADC on several CRC in vitro models, stratified according to the CMS classification as well as on CRC patient-derived organoids and mice. ALK interception strongly inhibited CMS1-cells, organoids, and tumor proliferation and was responsible for the dampening of ALK activation along with the downstream. Mechanistically, we found that CMS1 cells display several mRNA copies of both ALK and ALKAL2 ligand, suggesting a role for ALK abundance in the differential response to its inhibition. Collectively, these findings support the hypothesis that ALK may represent an attractive target for CMS1 colorectal cancer therapy.
Resumo:
Clear cell sarcoma of the kidney (CCSK) is the second most common pediatric renal tumor, characterized in 90% of cases by the presence of internal tandem duplications (ITDs) localized at the last exon of BCOR gene. BCOR protein constitute a core component of the non-canonical Polycomb Repressive Complex1 (PRC1.1), which performs a fundamental silencing activity. ITDs in the last BCOR exon at the level of PUFD domain have been identified in many tumor subtypes and could affect PCGF1 binding and the subsequent PRC1.1 activity, although the exact oncogenic mechanism of ITD remains poorly understood. This project has the objective of investigating the molecular mechanisms underlying the oncogenesis of CCSK, approaching the study with different methodologies. A first model in HEK-293 allowed to obtain important informations about BCOR functionality, suggesting that the presence of ITD generates an altered activity which is very different from a loss-of-function. It has also been observed that BCOR function within the PRC1.1 complex varies with different ITDs. Moreover, it allowed the identification of molecular signatures evoked by the presence of BCOR-ITD, including its role in extracellular matrix interactions and invasiveness promotion. The parallel analysis of WTS data from 8 CCSK cases permitted the identification of a peculiar signature for metastatic CCSKs, highlighting a 20-fold overexpression of FGF3. This factor promoted a significant increase in invasive ability in the cellular model. In order to study BCOR-ITD effects over cell stemness and differentiation, an inducible model is being obtained in H1 cells. This way, it will be possible to study the functionality of BCOR-ITD in a context more similar to the origin of CCSKs, evaluating both the specific interactome and phenotypic consequences caused by the mutation.
Resumo:
ABSTRACT Background:Strong opioids are the treatment of choice for moderate to severe cancer-related pain. Fentanyl is a synthetic opioid with high affinity for the μ-opioid receptor and is 75–100 times more potent than morphine. Fentanyl is metabolised rapidly, particularly in the liver and only 10% is excreted as intact substance. The use of CYP3A4 inhibitors and inducers, impaired liver function, and heating of the patch potentially influence fentanyl pharmacokinetics in a clinically relevant way. The influence of BMI and gender on fentanyl pharmacokinetics is questionable. Pharmacogenetic, may influence fentanyl pharmacokinetic and other factors have been studied but did not show significant and clinically relevant effects on fentanyl pharmacokinetic. Method: This is a biological interventional prospective, single-center study in 49 patients with solid or haematological neoplasm treated with transdermal fentanyl undergoing 5-step pharmacokinetic and pharmacogenetic withdrawals from administration of the fentanyl patch. Objective:to evaluate the pharmacokinetic and pharmacogenetic of transdermal fentanyl in relation to the patient's clinical response on pain Results: Sex was the only parameter with evidence of different distribution between responders and non-responders , showing a major chance for male to be responders than females. We found some correlation with pharmacokinetic parameters and sex, regarding adverse events and NRS correlation with BPI. NAT2 and UGT2B7 polymorphisms are associated with AUC and Cmax kinetics parameters, NAT2 and CYP4F2 showed some evidence of association with the fentanyl dosage and CYP2B6 polymorphism seemed to be correlate with side effects. Conclusion: Small sample size of study population make difficult do find some significant correlation between pharmacogenetic, pharmacokinetic and clinical response. Larger studies are needed to increase knowledge about response to opioid treatment in cancer patients to better individualized pain treatment.
Resumo:
Immune checkpoint inhibitors (ICI) that target PD-1/PD-L1 have recently emerged as an integral component of front-line treatment in metastatic NSCLC patients. The PD-1 inhibitor pembrolizumab is approved as monotherapy for advanced NSCLC with a PD-L1 tumor proportion score (TPS) of ≥1% and in combination with platinum doublet chemotherapy regardless of PD-L1 expression level. However, responses to either regimen occur in only a minority of cases, and PD-L1 TPS is limited as a biomarker in predicting whether a cancer will respond to PD-1 inhibition alone or would be more likely to benefit from PD-1 inhibition plus chemotherapy. Additional biomarkers of immunotherapy efficacy, such as tumor mutational burden (TMB), have not been incorporated into routine clinical practice for treatment selection. The identification of patients who have the greatest likelihood of responding to immunotherapies is critical for guiding treatment decisions. IN addition, early indicators of response could theoretically prevent patients from staying on an ineffective therapy where they might experience complications due to disease progression or develop toxicities from unnecessary exposure to an inactive agent. The aim of this research project is to investigate the clinicopathologic and molecular determinant of response/resistance to the currently available immune checkpoint inhibitors, in order to identify therapeutic vulnerabilities that can be exploited to improve the clinical outcomes of patients with advanced NSCLC.
Resumo:
BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC), crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk to develop OC, and that could permit patients to enter the most appropriate treatment and surveillance program. Next-Generation Sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely-pathogenic variants in BRCA1/2 and 38 in other 21 genes. Patients with pathogenic/likely-pathogenic variants in non-BRCA1/2 genes developed mainly OC alone compared to the other groups that developed also breast cancer or other tumors (p=0.001). Clinical correlation analysis showed that low-risk patients were significantly associated with platinum sensitivity (p<0.001). Regarding PARP inhibitors (PARPi) response, patients with pathogenic mutations in non-BRCA1/2 genes had significantly worse PFS and OS. Moreover, a statistically significant worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.
Resumo:
In the Era of precision medicine and big medical data sharing, it is necessary to solve the work-flow of digital radiological big data in a productive and effective way. In particular, nowadays, it is possible to extract information “hidden” in digital images, in order to create diagnostic algorithms helping clinicians to set up more personalized therapies, which are in particular targets of modern oncological medicine. Digital images generated by the patient have a “texture” structure that is not visible but encrypted; it is “hidden” because it cannot be recognized by sight alone. Thanks to artificial intelligence, pre- and post-processing software and generation of mathematical calculation algorithms, we could perform a classification based on non-visible data contained in radiological images. Being able to calculate the volume of tissue body composition could lead to creating clasterized classes of patients inserted in standard morphological reference tables, based on human anatomy distinguished by gender and age, and maybe in future also by race. Furthermore, the branch of “morpho-radiology" is a useful modality to solve problems regarding personalized therapies, which is particularly needed in the oncological field. Actually oncological therapies are no longer based on generic drugs but on target personalized therapy. The lack of gender and age therapies table could be filled thanks to morpho-radiology data analysis application.
Resumo:
Obiettivo: Lo scopo principale di questo studio è analizzare lo sviluppo di complicanze cardiovascolari (CV) nei pazienti con neoplasia e malattia moderata-severa da COVID-19 e valutare differenze di genere per il rischio di mortalità intraospedaliera o di complicanze CV. Materiali e Metodi. Popolazione oggetto di studio. Pazienti inclusi nel registro ISACS-COVID 19 (ClinicalTrials.gov: NCT05188612), dati raccolti a partire da Febbraio 2020 a Luglio 2022. I pazienti arruolati sono stati reclutati da centri ospedalieri di cinque paesi: Italia, Croazia, Macedonia, Serbia e Romania. Le caratteristiche d’inclusione comprendono: età >18 anni, essere ospedalizzati e avere diagnosi certa d’infezione da SARS-CoV2. Gli endpoint analizzati sono stati: mortalità intraospedaliera e lo sviluppo di scompenso cardiaco acuto (SCA) nei pazienti con neoplasia. Risultati. La popolazione finale oggetto dello studio era di 4,014 pazienti ospedalizzati per malattia da COVID-19. Di questi circa l’8% risultava affetto da neoplasia. I pazienti con neoplasia risultavano essere più frequentemente donne (49% vs 40%, p=0.004), con un’età media più alta (68.3±12.95 vs 65.2±15.6, p<0.001) ma con profilo di rischio CV simile ai pazienti liberi da neoplasia. A seguito di analisi logistica di regressione multivariata, le donne non risultavano avere un incremento del rischio di mortalità intraospedaliera (OR 0.83;95%CI 0.66-2.45), mentre la presenza di tumore era significativamente associata ad incremento di mortalità (OR 1.68;95%CI 1.16-2.45). Restringendo le analisi di regressione logistica ai pazienti oncologici, le donne presentavano un incremento del rischio di sviluppo di SC acuto (OR3.07;95%CI 1.14 – 8.30) così come lo era la presenza di tumore al seno (OR 2.26; 95%CI 1.38 – 12.1). Conclusioni. La presenza di neoplasia rappresenta una condizione che incrementa il rischio di mortalità intraospedaliera nei pazienti ricoverati con COVID-19, mentre il genere femminile no. Le donne sembrano avere un rischio aumentato di sviluppo di SC acuto soprattutto se presentano un tumore al seno
Resumo:
Ewing sarcoma (EWS) and CIC-DUX4 sarcoma (CDS) are pediatric fusion gene-driven tumors of mesenchymal origin characterized by an extremely stable genome and limited clinical solutions. Post-transcriptional regulatory mechanisms are crucial for understanding the development of this class of tumors. RNA binding proteins (RBPs) play a crucial role in the aggressiveness of these tumors. Numerous RBP families are dysregulated in cancer, including IGF2BPs. Among these, IGF2BP3 is a negative prognostic factor in EWS because it promotes cell growth, chemoresistence, and induces the metastatic process. Based on preliminary RNA sequencing data from clinical samples of EWS vs CDS patients, three major axes that are more expressed in CDS have been identified, two of which are dissected in this PhD work. The first involves the transcription factor HMGA2, IGF2BP2-3, and IGF2; the other involves the ephrin receptor system, particularly EphA2. EphA2 is involved in numerous cellular functions during embryonic stages, and its increased expression in adult tissues is often associated with pathological conditions. In tumors, its role is controversial because it can be associated with both pro- and anti-tumoral mechanisms. In EWS, it has been shown to play a role in promoting cell migration and neoangiogenesis. Our study has confirmed that the HMGA2/IGF2BPs/IGF2 axis contributes to CDS malignancy, and Akt hyperactivation has a strong impact on migration. Using loss/gain of function models for EphA2, we confirmed that it is a substrate of Akt, and Akt hyperactivation in CDS triggers ligand-independent activation of EphA2 through phosphorylation of S897. Moreover, the combination of Trabectedin and NVP/BEZ235 partially inhibits Akt/mTOR activation, resulting in reduced tumor growth in vivo. Inhibition of EphA2 through ALWII 41_27 significantly reduces migration in vitro. The project aim is the identification of target molecules in CDS that can distinguish it from EWS and thus develop new targeted therapeutic strategies.