947 resultados para Harwood Heights
Resumo:
The present invention provides a process comprising substitution of an acceptor molecule comprising a group -XC(O)- wherein X is O, S or NR8, where R8 is C1-6 alkyl, C6-12 aryl or hydrogen, with a nucleophile, wherein the acceptor molecule is cyclised such that said nucleophilic substitution at -XC (O)- occurs without racemisation. This process has particular application for the production of a peptide by extension from the activated carboxy-terminus of an acyl amino acid residue without epimerisation.
Resumo:
Insect pollinators provide a critical ecosystem service by pollinating many wild flowers and crops. It is therefore essential to be able to effectively survey and monitor pollinator communities across a range of habitats, and in particular, sample the often stratified parts of the habitats where insects are found. To date, a wide array of sampling methods have been used to collect insect pollinators, but no single method has been used effectively to sample across habitat types and throughout the spatial structure of habitats. Here we present a method of ‘aerial pan-trapping’ that allows insect pollinators to be sampled across the vertical strata from the canopy of forests to agro-ecosystems. We surveyed and compared the species richness and abundance of a wide range of insect pollinators in agricultural, secondary regenerating forest and primary forest habitats in Ghana to evaluate the usefulness of this approach. In addition to confirming the efficacy of the method at heights of up to 30 metres and the effects of trap color on catch, we found greatest insect abundance in agricultural land and higher bee abundance and species richness in undisturbed forest compared to secondary forest.
Resumo:
The extended Canadian Middle Atmosphere Model is used to investigate the large-scale dynamics of the mesosphere and lower thermosphere (MLT). It is shown that the 4-day wave is substantially amplified in southern polar winter in the presence of instabilities arising from strong vertical shears in the MLT zonal mean zonal winds brought about by parameterized nonorographic gravity wave drag. A weaker 4-day wave in northern polar winter is attributed to the weaker wind shears that result from weaker parameterized wave drag. The 2-day wave also exhibits a strong dependence on zonal wind shears, in agreement with previous modeling studies. In the equatorial upper mesosphere, the migrating diurnal tide provides most of the resolved westward wave forcing, which varies semiannually in conjunction with the tide itself; resolved forcing by eastward traveling disturbances is dominated by smaller scales. Nonmigrating tides and other planetary-scale waves play only a minor role in the zonal mean zonal momentum budget in the tropics at these heights. Resolved waves are shown to play a significant role in the zonal mean meridional momentum budget in the MLT, impacting significantly on gradient wind balance. Balance fails at low latitudes as a result of a strong Reynolds stress associated with the migrating diurnal tide, an effect which is most pronounced at equinox when the tide is strongest. Resolved and parameterized waves account for most of the imbalance at higher latitudes in summer. This results in the gradient wind underestimating the actual eastward wind reversal by up to 40%.
Resumo:
The recovery of the Arctic polar vortex following stratospheric sudden warmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stratopause, which descends as the event unfolds. Composites of these events in the Canadian Middle Atmosphere Model show the persistence of the lower-stratospheric anomaly is a result of strongly suppressed wave driving and weak radiative cooling at these heights. The upper-stratospheric and lower-mesospheric anomalies are driven immediately following the warming by anomalous planetary-scale eddies, following which, anomalous parameterized nonorographic and orographic gravity waves play an important role. These details are found to be robust for PJO events (as opposed to sudden warmings in general) in that many details of individual PJO events match the composite mean. Azonal-mean quasigeostrophic model on the sphere is shown to reproduce the response to the thermal and mechanical forcings produced during a PJO event. The former is well approximated by Newtonian cooling. The response can thus be considered as a transient approach to the steady-state, downward control limit. In this context, the time scale of the lower-stratospheric anomaly is determined by the transient, radiative response to the extended absence of wave driving. The extent to which the dynamics of the wave-driven descent of the stratopause can be considered analogous to the descending phases of the quasi-biennial oscillation (QBO) is also discussed.
Resumo:
Two members of the tetradentate N-donor ligand families 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO−LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO−LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C−C axis in order to achieve the cis−cis conformation that is required to form a complex, whereas the cis−cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10- coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.
Resumo:
The climatology of ozone produced by the Canadian Middle Atmosphere Model (CMAM) is presented. This three-dimensional global model incorporates the radiative feedbacks of ozone and water vapor calculated on-line with a photochemical module. This module includes a comprehensive gas-phase reaction set and a limited set of heterogeneous reactions to account for processes occurring on background sulphate aerosols. While transport is global, photochemistry is solved from about 400 hPa to the top of the model at ∼95 km. This approach provides a complete and comprehensive representation of transport, emission, and photochemistry of various constituents from the surface to the mesopause region. A comparison of model results with observations indicates that the ozone distribution and variability are in agreement with observations throughout most of the model domain. Column ozone annual variation is represented to within 5–10% of the observations except in the Southern Hemisphere for springtime high latitudes. The vertical ozone distribution is generally well represented by the model up to the mesopause region. Nevertheless, in the upper stratosphere, the model generally underestimates the amount of ozone as well as the latitudinal tilting of ozone isopleths at high latitude. Ozone variability is analyzed and compared with measurements. The comparison shows that the phase and amplitude of the seasonal variation as well as shorter timescale variations are well represented by the model at various latitudes and heights. Finally, the impact of incorporating ozone radiative feedback on the model climatology is isolated. It is found that the incorporation of ozone radiative feedback results in a cooling of ∼8 K in the summer stratopause region, which corrects a warm bias that results when climatological ozone is used.
Resumo:
Middle-atmosphere models commonly employ a sponge layer in the upper portion of their domain. It is shown that the relaxational nature of the sponge allows it to couple to the dynamics at lower levels in an artificial manner. In particular, the long-term zonally symmetric response to an imposed extratropical local force or diabatic heating is shown to induce a drag force in the sponge that modifies the response expected from the “downward control” arguments of Haynes et al. [1991]. In the case of an imposed local force the sponge acts to divert a fraction of the mean meridional mass flux upward, which for realistic parameter values is approximately equal to exp(−Δz/H), where Δz is the distance between the forcing region and the sponge layer and H is the density scale height. This sponge-induced upper cell causes temperature changes that, just below the sponge layer, are of comparable magnitude to those just below the forcing region. In the case of an imposed local diabatic heating, the sponge induces a meridional circulation extending through the entire depth of the atmosphere. This circulation causes temperature changes that, just below the sponge layer, are of opposite sign and comparable in magnitude to those at the heating region. In both cases, the sponge-induced temperature changes are essentially independent of the height of the imposed force or diabatic heating, provided the latter is located outside the sponge, but decrease exponentially as one moves down from the sponge. Thus the effect of the sponge can be made arbitrarily small at a given altitude by placing the sponge sufficiently high; e.g., its effect on temperatures two scale heights below is roughly at the 10% level, provided the imposed force or diabatic heating is located outside the sponge. When, however, an imposed force is applied within the sponge layer (a highly plausible situation for parameterized mesospheric gravity-wave drag), its effect is almost entirely nullified by the sponge-layer feedback and its expected impact on temperatures below largely fails to materialize. Simulations using a middle-atmosphere general circulation model are described, which demonstrate that this sponge-layer feedback can be a significant effect in parameter regimes of physical interest. Zonally symmetric (two dimensional) middle-atmosphere models commonly employ a Rayleigh drag throughout the model domain. It is shown that the long-term zonally symmetric response to an imposed extratropical local force or diabatic heating, in this case, is noticeably modified from that expected from downward control, even for a very weak drag coefficient
Resumo:
The present work reports a convenient route for the immobilisation of a phenanthroline-bis triazine (C1-BTPhen) group on the surface of zirconia-coated maghemite (γ-Fe2O3) magnetic nanoparticles. The magnetic nanoparticles functionalized with C1-BTPhen were able to co-extract Am(III) and Eu(III) from nitric acid (HNO3). The extraction efficiency of these C1-BTPhen-functionalized magnetic nanoparticles for both Am(III) and Eu(III) was 20% at 4M HNO3. The interaction between C1-BTPhen and metal cations is reversible. These functionalized magnetic nanoparticles can be used for the co-extraction of traces of Am(III) and Eu(III).
Resumo:
Wind generated waves at the sea surface are of outstanding importance for both their practical relevance in many aspects, such as coastal erosion, protection, or safety of navigation, and for their scientific relevance in modifying fluxes at the air-sea interface. So far long-term changes in ocean wave climate have been studied mostly from a regional perspective with global dynamical studies emerging only recently. Here a global wave climate study is presented, in which a global wave model (WAM) is driven by atmospheric forcing from a global climate model (ECHAM5) for present day and potential future climate conditions represented by the IPCC (Intergovernmental Panel for Climate Change) A1B emission scenario. It is found that changes in mean and extreme wave climate towards the end of the twenty-first century are small to moderate, with the largest signals being a poleward shift in the annual mean and extreme significant wave heights in the mid-latitudes of both hemispheres, more pronounced in the Southern Hemisphere, and most likely associated with a corresponding shift in mid-latitude storm tracks. These changes are broadly consistent with results from the few studies available so far. The projected changes in the mean wave periods, associated with the changes in the wave climate in the mid to high latitudes, are also shown, revealing a moderate increase in the equatorial eastern side of the ocean basins. This study presents a step forward towards a larger ensemble of global wave climate projections required to better assess robustness and uncertainty of potential future wave climate change.
Resumo:
Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05–0.11 m s−1. The lidar tended to overestimate the wind speed by ≈0.5 m s−1 for wind speeds below 20 m s−1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas.
Resumo:
An unusually strong and prolonged stratospheric sudden warming (SSW) in January 2006 was the first major SSW for which globally distributed long-lived trace gas data are available covering the upper troposphere through the lower mesosphere. We use Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) data, the SLIMCAT Chemistry Transport Model (CTM), and assimilated meteorological analyses to provide a comprehensive picture of transport during this event. The upper tropospheric ridge that triggered the SSW was associated with an elevated tropopause and layering in trace gas profiles in conjunction with stratospheric and tropospheric intrusions. Anomalous poleward transport (with corresponding quasi-isentropic troposphere-to-stratosphere exchange at the lowest levels studied) in the region over the ridge extended well into the lower stratosphere. In the middle and upper stratosphere, the breakdown of the polar vortex transport barrier was seen in a signature of rapid, widespread mixing in trace gases, including CO, H2O, CH4 and N2O. The vortex broke down slightly later and more slowly in the lower than in the middle stratosphere. In the middle and lower stratosphere, small remnants with trace gas values characteristic of the pre-SSW vortex lingered through the weak and slow recovery of the vortex. The upper stratospheric vortex quickly reformed, and, as enhanced diabatic descent set in, CO descended into this strong vortex, echoing the fall vortex development. Trace gas evolution in the SLIMCAT CTM agrees well with that in the satellite trace gas data from the upper troposphere through the middle stratosphere. In the upper stratosphere and lower mesosphere, the SLIMCAT simulation does not capture the strong descent of mesospheric CO and H2O values into the reformed vortex; this poor CTM performance in the upper stratosphere and lower mesosphere results primarily from biases in the diabatic descent in assimilated analyses.
Resumo:
We present measurements of NO, NOy, O3, and N2O within the lowermost stratosphere (LMS) over Europe obtained during the SPURT project. The measurements cover all seasons between November 2001 and July 2003. They span a broad band of latitudes from 30° N to 75° N and a potential temperature range from 290 to 380 K. The measurements represent a comprehensive data set of these tracers and reveal atmospheric transport processes that influence tracer distributions in the LMS. Median mixing ratios of stratospheric tracers in equivalent latitude-potential temperature coordinates show a clear seasonal cycle related to the Brewer-Dobson circulation, with highest values in spring and lowest values in autumn. Vertical tracer profiles show strong gradients at the extratropical tropopause, suggesting that vertical (cross-isentropic) mixing is reduced above the tropopause. Pronounced meridional gradients in the tracer mixing ratios are found on potential temperature surfaces in the LMS. This suggests strongly reduced mixing along isentropes. Concurrent large gradients in static stability in the vertical direction, and of PV in the meridional direction, suggest the presence of a mixing barrier. Seasonal cycles were found in the correlation slopes ΔO3/ΔN2O and ΔNOy/ΔN2O well above the tropopause. Absolute slope values are smallest in spring indicating chemically aged stratospheric air originating from high altitudes and latitudes. Larger values were measured in summer and autumn suggesting that a substantial fraction of air takes a "short-cut" from the tropical tropopause region into the extratropical LMS. The seasonal change in the composition of the LMS has direct implications for the ozone chemistry in this region. Comparisons of measured NO with the critical NO value at which net ozone production changes from negative to positive, imply ozone production up to 20 K above the local tropopause in spring, up to 30 K in summer, and up to 40 K in autumn. Above these heights, and in winter, net ozone production is negative.
Resumo:
Effects of bromine substitution at the 5 and 5,6-positions of the 1,10-phenanthroline nucleus of BTPhen ligand on their extraction properties for Ln(III) andAn(III) cations have been studied. Compared to C5-BTPhen, electronic modulation in BrC5-BTPhen and Br2C5-BTPhen enabled these ligands to be fine-tuned in order to enhance the separation selectivity of Am(III) from Eu(III)
Resumo:
To calculate the potential wind loading on a tall building in an urban area, an accurate representation of the wind speed profile is required. However, due to a lack of observations, wind engineers typically estimate the characteristics of the urban boundary layer by translating the measurements from a nearby reference rural site. This study presents wind speed profile data obtained from a Doppler lidar in central London, UK, during an 8 month observation period. Used in conjunction with wind speed data measured at a nearby airport, the data have been used to assess the accuracy of the predictions made by the wind engineering tools currently available. When applied to multiple changes in surface roughness identified from morphological parameters, the non-equilibrium wind speed profile model developed by Deaves (1981) provides a good representation of the urban wind speed profile. For heights below 500 m, the predicted wind speed remains within the 95% confidence interval of the measured data. However, when the surface roughness is estimated using land use as a proxy, the model tends to overestimate the wind speed, particularly for very high wind speed periods. These results highlight the importance of a detailed assessment of the nature of the surface when estimating the wind speed above an urban surface.
Resumo:
An underestimate of atmospheric blocking occurrence is a well-known limitation of many climate models. This article presents an analysis of Northern Hemisphere winter blocking in an atmospheric model with increased horizontal resolution. European blocking frequency increases with model resolution, and this results from an improvement in the atmospheric patterns of variability as well as a simple improvement in the mean state. There is some evidence that the transient eddy momentum forcing of European blocks is increased at high resolution, which could account for this. However, it is also shown that the increase in resolution of the orography is needed to realise the improvement in blocking, consistent with the increase in height of the Rocky Mountains acting to increase the tilt of the Atlantic jet stream and giving higher mean geopotential heights over northern Europe. Blocking frequencies in the Pacific sector are also increased with atmospheric resolution, but in this case the improvement in orography actually leads to a decrease in blocking